Debugging

Marcelo Ponce
SciNet HPC Consortium :
University of Toronto /

July 15, 2016 Q

Outline

v

v

v

v

Debugging Basics
Debugging with the command line: GDB
Memory debugging with the command line: valgrind

(Parallel) Debugging with DDT

Debugging basics

Debugging basics

Debugging basics

’Help, my program doesn’t work!

Debugging basics

’Help, my program doesn’t work!

$ gecc -03 answer.c
$./a.out
Segmentation fault

Debugging basics

’Help, my program doesn’t work"

|a miracle occurs]|

1

gcc -03 answer.c
$ /a out
Segmentation fault

Debugging basics

’Help, my program doesn’t work"

| a miracle occurs|

!
‘My program works brilliantly! ‘

gcc -03 answer.c
$ /a out
Segmentation fault

Debugging basics

gcc -03 answer.c
’Help, my program doesn’t work! ‘ $ /a out
Segmentation fault

| a miracle occurs|

! — $ gecec -03 answer.c
‘My program works brllllantly!‘ $./a.out
42

Debugging basics

gcc -03 answer.c
‘Help, my program doesn’t work! ‘ $ /a out
Segmentation fault

’ a miracle occurs‘

! — $ gcc -03 answer.c
‘My program works brllllantly!‘ $./a.out
42

» Unfortunately, “miracles” are not yet supported by SciNet.

SciNet

Debugging basics

gcc -03 answer.c
‘Help, my program doesn’t work! ‘ $ /a out
Segmentation fault

’ a miracle occurs‘

! — $ gcc -03 answer.c
‘My program works brllllantly!‘ $./a.out
42

» Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

SciNet

Common symptoms

Errors at compile time

Common symptoms

Errors at compile time

» Syntax errors: easy to fix
» Library issues
» Cross-compiling

» Compiler warnings

Common symptoms

Errors at compile time
» Syntax errors: easy to fix
» Library issues
» Cross-compiling

» Compiler warnings

Always switch this on, and fix or understand them!

Common symptoms

Errors at compile time
» Syntax errors: easy to fix
» Library issues
» Cross-compiling

» Compiler warnings

Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Common symptoms

Errors at compile time
» Syntax errors: easy to fix
» Library issues
» Cross-compiling

» Compiler warnings

Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

Common symptoms

Errors at compile time
» Syntax errors: easy to fix
» Library issues
» Cross-compiling

» Compiler warnings

Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

» Floating point exceptions
» Segmentation fault
» Aborted

» Incorrect output (nans)

Common issues

Arithmetic

Memory access
Logic

Misuse

Syntax

Resource starvation

Parallel

corner cases (sqrt(-0.0)), infinities

Index out of range, uninitialized pointers.
Infinite loop, corner cases

wrong input, ignored error, no initialization
wrong operators/arguments

memory leak, quota overflow

race conditions, deadlock

What is going on?

v

Almost always, a condition you are sure is satisfied, is not.

» But your programs likely relies on many such assumptions.

v

First order of business is finding out what goes wrong, and
what assumption is not warranted.

v

Debugger: program to help detect errors in other programs.

v

You are the real debugger.

How to avoid debugging:

» Write better code.

» Simpler, clear, straightforward code.
» Modularity (no global variables or 10,000-line functions)
» Avoid 'cute’ tricks (no obfuscated C code winners)

» Don’t write code, use existing libraries
» Write (simple) tests for each part of your code

» Use version control so you can 'roll back’.

Debugging Workflow

First things first:

>

As soon as you are convinced there is a real problem, create
the simplest situation in which it reproducibly occurs.

This is science: model, hypothesis, experiment, conclusion.

Try a smaller problem size, turning off physical effects with
options, etc. until you have a simple, fast repeatable example
of the bug.

Try to narrow it down to a particular module/function/class.
For fortran, switch on bounds checking (-fbounds-check.)

Now you're ready to start debugging.

Ways to debug

Ways to debug

» Preemptive:
» Turn on compiler warnings: fix or understand them!

$ gecc/gfortran -Wall

» Check your assumptions (e.g. use assert).

Ways to debug

» Preemptive:
» Turn on compiler warnings: fix or understand them!

$ gecc/gfortran -Wall

» Check your assumptions (e.g. use assert).

» Inspect the exit code and read the error messages!

Ways to debug

» Preemptive:
» Turn on compiler warnings: fix or understand them!

$ gecc/gfortran -Wall

» Check your assumptions (e.g. use assert).
» Inspect the exit code and read the error messages!

» Use a debugger

Ways to debug

» Preemptive:
» Turn on compiler warnings: fix or understand them!

$ gecc/gfortran -Wall

» Check your assumptions (e.g. use assert).
» Inspect the exit code and read the error messages!
» Use a debugger

» Add print statements

Ways to debug

» Preemptive:
» Turn on compiler warnings: fix or understand them!

$ gecc/gfortran -Wall

» Check your assumptions (e.g. use assert).
» Inspect the exit code and read the error messages!
» Use a debugger

» Add print statements «—No way to debug!

What's wrong with using print statements?

Strategy

What's wrong with using print statements?

Strategy

» Constant cycle:

What's wrong with using print statements?

Strategy

» Constant cycle:
1. strategically add print statements

What's wrong with using print statements?

Strategy

» Constant cycle:

1. strategically add print statements
2. compile

What's wrong with using print statements?

Strategy

» Constant cycle:
1. strategically add print statements
2. compile
3. run

What's wrong with using print statements?

Strategy

» Constant cycle:

1.

strategically add print statements

2. compile
3.
4. analyze output

run

What's wrong with using print statements?

Strategy

» Constant cycle:

1.

strategically add print statements

2. compile
3.
4. analyze output bug not found?

run

What's wrong with using print statements?

Strategy

» Constant cycle:

1.

2
3.
4

strategically add print statements |
. compile

run
. analyze output bug not found? ——

What's wrong with using print statements?

Strategy

» Constant cycle:

1. strategically add print statements ~*
2. compile
3. run

4. analyze output bug not found? ——

» Removing the extra code after the bug is fixed

What's wrong with using print statements?

Strategy

» Constant cycle:

1. strategically add print statements ~*
2. compile
3. run

4. analyze output bug not found? ——
» Removing the extra code after the bug is fixed

» Repeat for each bug

What's wrong with using print statements?

Strategy

» Constant cycle:

1. strategically add print statements ~*
2. compile
3. run

4. analyze output bug not found? ——
» Removing the extra code after the bug is fixed

» Repeat for each bug

Problems with this approach

What's wrong with using print statements?

Strategy

» Constant cycle:

1. strategically add print statements ~*
2. compile
3. run

4. analyze output bug not found? ——
» Removing the extra code after the bug is fixed

» Repeat for each bug

Problems with this approach

» Time consuming
» Error prone

» Changes memory, timing. ..

What's wrong with using print statements?

Strategy

» Constant cycle:

1. strategically add print statements |
2. compile

3. run

4. analyze output bug not found? ——

» Removing the extra code after the bug is fixed

» Repeat for each bug

Problems with this approach

» Time consuming

» Error prone

» Changes memory, timing... There’s a better way!

Symbolic debuggers

Symbolic debuggers

Features

Symbolic debuggers

Features

1.

AR

Crash inspection

Function call stack

Step through code
Automated interruption
Variable checking and setting

Symbolic debuggers

Features

1.

AR

Crash inspection
Function call stack
Step through code
Automated interruption

Variable checking and setting

Use a graphical debugger or not?

Symbolic debuggers

Features

1. Crash inspection
Function call stack
Step through code

Automated interruption

AR

Variable checking and setting
Use a graphical debugger or not?

» Local work station: graphical is convenient

» Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same

concepts.
Scifet

Symbolic debuggers

Preparing the executable

» Add required compilination flags:
$ gecc/g++/gfortran -g [-gstabs]
$ icc/icpc/ifort -g [-debug parallell
$ nveec -g -G

» Optional: switch off optimization -00

Symbolic debuggers

Preparing the executable

» Add required compilination flags:
$ gecc/g++/gfortran -g [-gstabs]
$ icc/icpc/ifort -g [-debug parallell
$ nveec -g -G

» Optional: switch off optimization -00

Command-line based symbolic debuggers: gdb

GDB

What is GDB?

> Free, GNU license, symbolic debugger.
» Available on many systems.
» Been around for a while, but still developed and up-to-date

» Text based, but has a '-tui’ option.

$ module load gcc/4.7.2

$ gcc -Wall -g -00 example.c -o example
$ module load gdb/7.6

$ gdb -tui example

(gdb) _

GDB basic building blocks

Demonstration of GDB features

» We will look at the features of gdb using a running example.
» Example reads integers from command line and sums them.

» There's a C and a Fortran version.

L I~ A~ I~]

ssh USERQ@login.scinet.utoronto.ca -X

ssh gpc01 -X

qsub -1 nodes=1:ppn=8,walltime=8:00:00 -I -X -qteach
cp -r /scinet/course/ss2016/debug $SCRATCH

source $SCRATCH/debug/code/setup

cd $SCRATCH/debug/code/bugexample

make bugexample #(or make bugexample_f)

GDB building block #1: Inspect crashes

Inspecting core files

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash
» needs max core size set (ulimit -c <number>)
» gdb reads with gdb <executable> <corefile>

» it will show you where the program crashed

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash
» needs max core size set (ulimit -c <number>)
» gdb reads with gdb <executable> <corefile>

» it will show you where the program crashed

No core file?

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash
> needs max core size set (ulimit -c <number>)
» gdb reads with gdb <executable> <corefile>

» it will show you where the program crashed

No core file?

> can start gdb as gdb <executable>
»> type run to start program

» gdb will show you where the program crashed if it does.

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash
> needs max core size set (ulimit -c <number>)
» gdb reads with gdb <executable> <corefile>

» it will show you where the program crashed

No core file?

> can start gdb as gdb <executable>
»> type run to start program

» gdb will show you where the program crashed if it does.

Related gdb commands

run run the executable from the start
list list code lines (where current execution is, or ran
_gm

et

GDB building block #1: Inspect crashes

$ ulimit -c 1024

$./bugexample #(or ./bugexample_f)

Give some integers as command-line arguments
$./bugexample 1 3 5

Segmentation fault (core dumped)

GDB building block #1: Inspect crashes

$ ulimit -c 1024

$./bugexample #(or ./bugexample_f)

Give some integers as command-line arguments
$./bugexample 1 3 5

Segmentation fault (core dumped)

$ gdb ./bugexample core.2387 # core number varies

GDB building block #1: Inspect crashes

$ ulimit -c 1024

$./bugexample #(or ./bugexample_f)

Give some integers as command-line arguments
$./bugexample 1 3 5

Segmentation fault (core dumped)

$ gdb ./bugexample core.2387 # core number varies

GNU gdb (GDB) 7.6
Copyright (C) 2013 Free Software Foundation, Inc.

Reading symbols from debug/code/bugexample/bugexample. . .done.
[New LWP 3817]

warning: Can’t read pathname for load map: Input/output error.
Core was generated by °./bugexample 1 3 5°.

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30
30 s += alil; -

(gdb) 5;éi:NEt

GDB building block #1: Inspect crashes

Program terminated with signal 11, Segmentation fault.
#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30
30 s += alil;

This points at the line where the error is detected.

GDB building block #1: Inspect crashes

Program terminated with signal 11, Segmentation fault.
#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30
30 s += alil;

This points at the line where the error is detected. More context:

GDB building block #1: Inspect crashes

Program terminated with signal 11, Segmentation fault.
#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30
30 s += alil;

This points at the line where the error is detected. More context:

(gdb) list

GDB building block #1: Inspect crashes

Program terminated with signal 11, Segmentation fault.
#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30
30 s += alil;

This points at the line where the error is detected. More context:

(gdb) list

25 /* Compute the sum of the array of integers */
26 int sum_integers(int n, intx* a)

27 {

28 int i, s;

29 for (i=0; i<n; i++)
30 s += alil;

31 return s;

32 }

(gdb)

GDB building block #2: Function call stack

Interrupting program

» Press Crtl-C while program is running in gdb

» gdb will show you where the program was.

GDB building block #2: Function call stack

Interrupting program

» Press Crtl-C while program is running in gdb

» gdb will show you where the program was.

Stack trace

» From what functions was this line reached?

» What were the arguments of those function calls?

GDB building block #2: Function call stack

Interrupting program

» Press Crtl-C while program is running in gdb

» gdb will show you where the program was.

Stack trace

» From what functions was this line reached?

» What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue

down go to called function
up go to caller

GDB building block #2: Function call stack

(gdb) list
25 /x Compute the sum of the array of integers */
26 int sum_integers(int n, int* a)

27 {

28 int i, s;

29 for (i=0; i<n; i++)
30 s += al[il;

31 return s;

32 }

(gdb) Dbacktrace

#0 0x4007d5 in sum_integers (n=3,a=0x4) at intlisttools.c:30

#1 0x40082a in process (argc=4,argv=0x7fff0b89ceb8) at process.c
#2 0x4006d3 in main (argc=4,argv=0x7fff0b89ce58) at bugexample.c

(gdb)

et

GDB building block #3: Variables

Checking a variable

» Can print the value of a variable
» Can keep track of variable (print at prompt)
» Can stop the program when variable changes

» Can change a variable ("what if ...")

GDB building block #3: Variables

Checking a variable

» Can print the value of a variable

» Can keep track of variable (print at prompt)
» Can stop the program when variable changes
» Can change a variable (“what if ...")

gdb commands

print print variable

display print at every prompt
set variable change variable

watch stop if variable changes

GDB building block #3: Variables

Remember: We were looking at a seg fault in s += a[il.

(gdb) print i

0

(gdb) print al0]

Cannot access memory at address 0x4
(gdb) print a

0x4

(gdb) up

#1 0x000000000040082a in process (argc=4, argv=0x7fff0b89ce58)
11 int s = sum_integers(n, arg);

(gdb) print arg
$1 = (int *) 0x4

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);
10 int n = argc-1;

11 int s = sum_integers(n, arg);)

12 print_integers(n, arg); 5/émet
13 printf ("Sum of integers is: %d\n", s); e

GDB building block #4: Automatic interruption
Breakpoints

» break [file:]<line>|<function>
» each breakpoint gets a number
» when run, automatically stops there

» can add conditions, temporarily remote breaks, etc.

GDB building block #4: Automatic interruption

Breakpoints

» break [file:]<line>|<function>
» each breakpoint gets a number
» when run, automatically stops there

» can add conditions, temporarily remote breaks, etc.

Related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

GDB building block #4: Automatic interruption

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);
10 int n = argc-1;

11 int s = sum_integers(n, arg);

12 print_integers(n, arg);

13 printf ("Sum of integers is: %d\n", s);

14 free(arg);

15 }

(gdb) break read_integer_arguments
Breakpoint 1 at 0x4006ec: file intlisttools.c, line 8.

GDB building block #4: Automatic interruption

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);
10 int n = argc-1;

11 int s = sum_integers(n, arg);

12 print_integers(n, arg);

13 printf ("Sum of integers is: %d\n", s);

14 free(arg);

15 }

(gdb) break read_integer_arguments
Breakpoint 1 at 0x4006ec: file intlisttools.c, line 8.

(gdb) run 1 3 5

GDB building block #4: Automatic interruption

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);
10 int n = argc-1;

11 int s = sum_integers(n, arg);

12 print_integers(n, arg);

13 printf ("Sum of integers is: %d\n", s);

14 free(arg);

15 }

(gdb) break read_integer_arguments
Breakpoint 1 at 0x4006ec: file intlisttools.c, line 8.

(gdb) run 1 3 5

Starting program: debug/code/bugexample/bugexample 1 3 5

Breakpoint 1, read_integer_arguments (n=4, a=0x7fffffffc9Ob8)
at intlisttools.c:8 >

8 int* result = malloc(sizeof (int)*(n-1)); 5/émet

(gdb) ADVANGED RESEARCH COMPUTING i the UNIVERSITY OF TORONTO

GDB building block #b5: Step through code

Stepping through code

» Line-by-line
» Choose to step into or over functions

» Can show surrounding lines or use -tui

GDB building block #b5: Step through code

Stepping through code

» Line-by-line
» Choose to step into or over functions

» Can show surrounding lines or use -tui

gdb commands

list list part of code

next continue until next line
step step into function

finish continue until function end
until continue until line/function

GDB building block #b5: Step through code

(gdb) list 6,14
6 int* read_integer_arguments(int n, char*x a)

7 {

8 int* result = malloc(sizeof (int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it is ju
11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(alil);

14 %}

(gdb) display result

1: result = (int *) 0x0
(gdb) next

12 for (i=1;i<n;i++)

1: result = (int *) 0x601010
(gdb) until 14

GDB building block #b5: Step through code

(gdb) until 14

read_integer_arguments (n=4,a=0x7fffffffc9b8) at intlisttools.c:

14 }

1: result = (int *) 0x601010

(gdb) finish

Run till exit from #0 read_integer_arguments (n=4,
a=0x7fffffffcOb8) at intlisttools.c:14

0x000000000040080c in process (argc=4, argv=0x7fffffffc9b8)
at process.c:9

9 int* arg = read_integer_arguments(argc, argv);
Value returned is $3 = (int *) 0x4
(gdb)

GDB building block #b5: Step through code

(gdb) until 14

read_integer_arguments (n=4,a=0x7fffffffc9b8) at intlisttools.c:

14 }

1: result = (int *) 0x601010

(gdb) finish

Run till exit from #0 read_integer_arguments (n=4,
a=0x7fffffffcOb8) at intlisttools.c:14

0x000000000040080c in process (argc=4, argv=0x7fffffffc9b8)
at process.c:9

9 int* arg = read_integer_arguments(argc, argv);
Value returned is $3 = (int *) 0x4
(gdb)

He, why is the result variable equal to 0x601010 while the value
returned is 0x47

GDB building block #b5: Step through code

(gdb) until 14

read_integer_arguments (n=4,a=0x7fffffffc9b8) at intlisttools.c:

14 }

1: result = (int *) 0x601010

(gdb) finish

Run till exit from #0 read_integer_arguments (n=4,
a=0x7fffffffcOb8) at intlisttools.c:14

0x000000000040080c in process (argc=4, argv=0x7fffffffc9b8)
at process.c:9

9 int* arg = read_integer_arguments(argc, argv);
Value returned is $3 = (int *) 0x4
(gdb)

He, why is the result variable equal to 0x601010 while the value
returned is 0x47

Contradicts your assumption of what the program does. /
The program is always right, you are wrong. ééﬁ\let

GDB building block #b5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x47?

GDB building block #b5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x47?

(gdb) list read_integer_arguments,+7

7 {

8 int* result = malloc(sizeof (int)*(n-1));

9 int 1i;

10 /* convert every argument, but skip ’0’, because it is ju
11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(alil);

14 }

GDB building block #b5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x47?

(gdb) list read_integer_arguments,+7

7 {

8 int* result = malloc(sizeof (int)*(n-1));

9 int 1i;

10 /* convert every argument, but skip ’0’, because it is ju
11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(alil);

14 }

Aargh! Forgot the return statement!

GDB building block #b5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x47?

(gdb) list read_integer_arguments,+7

7 {

8 int* result = malloc(sizeof (int)*(n-1));

9 int 1i;

10 /* convert every argument, but skip ’0’, because it is ju
11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(alil);

14 }

Aargh! Forgot the return statement!

Feeling like an idiot is a common side-effect of debugging.

Scifet

help
run

backtrace/where

list
break
delete
continue
step
next
print
finish
set variable
down
tbreak
until

up
watch
quit

GDB command summary

o' H

a

5B n o o M

P

fin

set var
do

tb

unt

up

wa

q

print description of

run from the start (+args)
function call stack

list code lines

set breakpoint

delete breakpoint

continue

step into function

continue until next line
print variable

continue until function end
change variable

go to called function

set temporary breakpoint
continue until line/function
go to caller

stop if variable changes
quit gdb

Memory Debugging

Memory Checking: Valgrind

v

Memory errors do not always give segfaults

v

Commonly have to go way out of bounds to get a segfault.

v

Write into other variable - hard to find problem.

v

Valgrind - intercepts each memory call and checks them.

v

Finds illegal accesses, uninitialized values, memory leaks.

v

Warning: Quite verbose, typically, and, if you use external
libraries, sometimes false positives. debugging too.

Valgrind example

$ valgrind ./bugexample 1 3 5

==909== Memcheck, a memory error detector

==909== Copyright (C) 2002-2013, and GNU GPL’d, by Julian Seward
==909== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyr
==909== Command: ./bugexample 1 3 5

==909==

==909== Invalid write of size 4

==909== at 0x400741: read_integer_arguments (intlisttools.c:1
==909== by 0x40080B: process (process.c:9)

==909== by 0x4006D2: main (bugexample.c:12)

==909== Address 0x51c304c is O bytes after a block of size 12 a
==909== at 0x4C2636D: malloc (vg_replace_malloc.c:291)
==909== by O0x4006FF: read_integer_arguments (intlisttools.c:8
==909== by 0x40080B: process (process.c:9)

==909== by 0x4006D2: main (bugexample.c:12)

==909==

==909== Invalid read of size 4

Valgrind example (continued)

==909== HEAP SUMMARY:

==909== in use at exit: 12 bytes in 1 blocks

==909== total heap usage: 1 allocs, O frees, 12 bytes allocate
==909==

==909== LEAK SUMMARY:

==909== definitely lost: 12 bytes in 1 blocks

==909== indirectly lost: O bytes in O blocks

==909== possibly lost: O bytes in O blocks

==909== still reachable: O bytes in O blocks

==909== suppressed: O bytes in O blocks

==909== Rerun with --leak-check=full to see details of leaked me
==909==

==909== For counts of detected and suppressed errors, rerun with
==909== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 f
Segmentation fault

$ _

SciNet

Valgrind recommendations

» Using valgrind on mature codes often shows lots of errors.
Now, some may not be an issue (e.g. dead code or false
positives from libraries), but hard to know.

» So: start using valgrind early in development.

» Program modularly, and create small unit tests, on which you
can comfortably use valgrind.

» Apart from this basic valgrind usage, there are other tools
availble with valgrind to deal cache performance, to get more
detailed memory leak information, to detect race conditions,

etc. (some of which we'll discuss later).
Scilet

Graphical symbolic debuggers

Graphical symbolic debuggers

Features

» Nice, more intuitive graphical user interface
» Front to command-line based tools: Same concepts

» Need graphics support: X forwarding (or VNC)

Graphical symbolic debuggers

Features

» Nice, more intuitive graphical user interface
» Front to command-line based tools: Same concepts

» Need graphics support: X forwarding (or VNC)

Available on SciNet: ddd and ddt

> ddd

$ module load gcc ddd

$ ddd <executable compiled with -g flag>
» ddt

$ module load ddt
$ ddt <executable compiled with -g flag>
(more later)

Graphical symbolic debuggers - ddd

- . ioi: Jhoue/ieon/coutees/enupdebunyerz/adiie (on dpc favenpem o [elEiEs
File Emt i\ew Erugram Commands Status Source Data Help |

0 v Te WP 0 2 o A Qo B m

Lookup Find:: Break Watch Prml DiSply Pl Hide notate St UKD

Jl=
float f=i D 0: -
int i, th;
Rpragma nmp para]]el for default{none) private(i.th) shared(f) Run
fo g;uﬁg'; 100: 042 4 Interrupt
th = omp_get_ thread _numC}; Step | St
printf{ "&din", Threads i L"!
g = sqrt(o. 25*1+th) 4 Thread 0x41e02340 | st
D B fi=q 3 T 5 g Until| Firish
2 Thread Ox40a00940 at add. 7
printf("rasult = %F\n", £; 1 Thread OxZasaab8d3dzo () at add.c:17 %M
, Up | Dawn
B i
HL_Esit | e |
Ersg;uuint 1, main.omp_fn.0 (.omp_data i=0x7fFfFFfrdaf Close Help A
gib) ¢
continuing.

[Switching to Thread 0x40a00940 (WP 251700]

Breakpoint 1, main.omp_fn.0 (.omp_data i=0xpffFFFFFdIf0d at add.c:17
(gdb) graph dwsp'lay 1

(gdb) graph display th

(adb) <

Continuing.

0

[Switching to Thread 0x41401340 (LWP 251712]

Breakpoint 1, main.omp_fn.0 (.omp_data_i=0:7fFFFFFFdIfO) at add.c:1?
(gdb) §

4 Display 3: th (enabled, scope main.omp_fn. 0, address 0x41401074) =]

Graphical symbolic debuggers

x o
ession_Control_Search View_Help

ddt

> &GS REBLEEIE ! A-O

Current Group: [AT =lFocus on current: & Group ¢ Process ¢ Thread [~ Step Threads Together |

IAH [o]

Create Group

functions ininh (] [@ diftsd.cc |) mpidebug.ch (1 | 4 comm_ininh Locals | current Line(s) | Current Stack |
95 p.runtime = ini.get_double("runtime”, 1.0e5); e BB
% pdt = ini.get_dovble("dt", 0.2); rizble Name Value
97 BC - iger doubleliac’, 2 0; DtOverDx2
98 pIl0] = ini.get.double(’x argc =
99 Pl = iniget doub\e(“\y 10) argv oxttice
100 pl2] = ini.get_double("iz"; 10); comm
101 P01 = miegetlong (e, 101
102 pn(l] = inigetTong ("ny", 10) | deta ox17
103 pni2] = ini.getdong (‘nz', 10); dme oxrised
105 - fullnn
106 <<pl0] << st — 14073720
107 << pll] <<' negProc
%gg <<pl2] << ‘\ﬂ negslabin
<< 'n= negslabout
110 <<pnl0] << npoints — 14073735
111 <<pinll] <<’ rds =
moraebug ch ﬂg << p.n2] << ‘\n Z\”d’;;ugrsss — 13424640
oo deb J 114 1 points per processor P
ompi debug 115 double ppp = (p.n[0Fp.n[1F*p.n2]siz periods H
H ostream _'Ll 116 TN E - A1 o 31 2 1 _'_I KT —
3 < Type: none selected

InputOupuEs | Breakpoints | Watchpoints _ Stacks | Tacepoints | Tacepoint Output |
Stacks

Evaluate

EES

Expression [Valu

Threads | Function |

I 113 _kmp_Jaunch_monitor
1 1 e _kmp_Jaunch_worker
L m— b openis ssync tread

3d.c
Tl Jwservice t thrsad ot

T in current context>

<No symbol

DDT

DDT &DDT
» “Distributed Debugging Tool”

» Powerful GUI-based commercial debugger by Allinea.

» Supports C, C++ and Fortran

» Supports MPI, OpenMP, threads, CUDA and more

» Available on all SciNet clusters (GPC, TCS, ARC, P7)

» Available on SHARCNET's kraken, requin, orca and monk.

» Part of the “Allinea Forge" suite, which also includes a

"profiler’ called MAP.)
Scifet

Launching ddt

>
>
>

vy

Load your compiler and MPIl modules.
Load the ddt module: $ module load ddt

Start ddt with one of these:
$ ddt

$ ddt <executable compiled with -g flag>

$ ddt <executable compiled with -g flagd <arguments>
First time: create config file: OpenMPI (skip other steps)

Then gui for setting up debug session.

Launching ddt

» Load your compiler and MPI modules.
» Load the ddt module: $ module load ddt

» Start ddt with one of these:
$ ddt

$ ddt <executable compiled with -g flag>

$ ddt <executable compiled with -g flagd <arguments>
» First time: create config file: OpenMPI (skip other steps)

» Then gui for setting up debug session.

DDT - Welcome (on gpc-fl02n084)

h;what would you like to do?

| Bun and Debug a Program I

Manually Launch a Program |

Attach to a Running Programl

Open Core Fles |

Restore a Checkpoint |

DDT = || SCHet

Run and Debug a Program (session setup)

x DDT - Run (on gpc-f102n084)

h inetr; di

iff3d/diff3d

?

Details & —I

Application: [/home/s/scinet/rzon/Code/diff3d/diff3d

3 o

Arguments: |

=

Input File: |

3

Working Directory: [

¥ MPI: 2 processes, OpenMPI

Number of processes: |2 3:

2 g

mpirun arguments |
[V OpenMP: 4 threads
Number of OpenMP threads: |4 3:

I” cubAa

Environment Variables: none

Details &
Implementation: OpenMPI, no queue Change.
Details
Details
¥ Memory Debugging: Minimal, No guard pages, Backtraces, Preload Details.
Details v
Details v

Plugins: none

Cancel :]

Memory Debugging Options (on gpc-f102n084)

[¥ Preload the memory debugging library:

Language v
Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library manually

[-Heap Debugging
& Minimal (fewest tests, picks up invalid pointers passed to memory functions)
Runtime (fast, basic tests including fence-post checking, null handling)
Low (adds minimal heap checking, overwriting of allocated/freed space)

-~
~
¢ Medium (adds full heap checking, always relocates block on realloc)
¢ High (adds checking for arguments to common functions)

~

Custom: |

~Heap Overflow/Underflow Detecti

I Add guard pages to detect out of bounds heap access
Guard pages: [1 =] Add guard|pages: [After

~Adyanc

I~ Specify heap-check interval: [100 =
[V Store stack backtraces for memory allocations

I~ Only enable for these processes

0-1 100% | Select All X2 X0.5 1%

SciNet

Riin and Dehiioc 2 Praoram (ceccinn cghm\

x DDT - Run (on gpc-f102n084)

Application: /home/s/scinet/rzon/Code/diff3d/diff3d

Details & <| x Memory Debugging Options (

Application: |/home/s/scinet/rzon/code/difde/difde

= =]

¥ Preload the memory debugging library: Lanc

Arguments: [

Note: Preloading only works for programs linked
program is statically linked, you must relink it agair

Input File: [

=
= =]

—Heap Debugging

Working Directory: |

IV MPI: 2 processes, OpenMPI
Number of processes: |2 Eﬁ
Implementation: OpenMPI, no queue Change...

=]

Details &

Minimal (fewest tests, picks up invalid pointer:

Runtime (fast, basic tests including fence-post

Medium (adds full heap checking, always relo

High (adds checking for arguments to commol

mpirun arguments |
[V OpenMP: 4 threads

Number of OpenMP threads: IA_E

I~ cupa

¥ Memory Debugging: Minimal, No guard pages, Backtraces, Preload
Environment Variables: none

Plugins: none

g
~
¢ Low (adds minimal heap checking, overwriting
»
»
o

Custom:]
Details «
—Heap Overflow/Underflow Detection
I~ Add guard pages to detect out of bounds hea
Details Guard pages: [1 3: Add guard pages IA_ft
Details...
—Advanced
Details ¥ . N
I~ Specify heap-check interval: 100
Details ¥

v Store stack backtraces for memory allocation:

[~ Only enable for these processes:

[o-1 100% | Selec

X DDT - Run (on gpc-f102n084)

Application: /home/s/scinet/rzon/Code/diff3d/diff 3d

Details =

Application: |/home/s/scinetjrzon/Code/diff3d/diff3d

Arguments: |

3 qf
=

Input File: |

2 g

Working Directory: |
¥ MPI: 2 processes, OpenMP|

Number of processes: |2 -

Implementation: OpenMPl, no queue Change... |

2 qf

Details =

mpirun arguments |
[V OpenMP: 4 threads
Number of OpenMP threads: |4 33

I~ cubAa

[V Memory Debugging: Minimal, No guard pages, Backtraces, Preload

Environment Variables: none

Plugins: none

Details =

Details
Details...
Details ¥

Details ¥

‘EI

[v Preload the memory de

Note: Preloading only wo
program is statically linkec

—Heap Debugging

)

Minimal (fewest tests,
Runtime (fast, basic te
Low (adds minimal he
Medium (adds full hez
High (adds checking f

Custom: |

—Heap Overflow/Underfloy

o e Bie e Hie |

[~ Add guard pages to «
1 =

Guard pages:

—Advanced
[~ Specify heap-check i
[v Store stack backtrace

[~ Only enable for these

n.1

X DDT - Run (on gpc-f1L02n084)

Application: /home/s/scinet/rzon/Code/diff3d/diff3d

2

Application: |Ihome/s/scinetﬂrzon/Code/difde/difde

Arguments: |

3 sl
=l

Input File: |

=

Working Directory: |

[¥ MPI: 2 processes, OpenMPI
Number of processes: |2 EC
Implementation: OpenMPl, no queue Change... |

3 o

Details =

mpirun arguments |

[V OpenMP: 4 threads

Number of OpenMP threads: m

[T CUDA

[V Memory Debugging: Minimal, No guard pages, Backtraces, Preload
Environment Variables: none

Plugins: none

Details

Details
Details...
Details «

Details »

[V Preloz
Note: Pr
program
—Heap D

& Mini

" Runt
Low
Mec

Higt

2 I Bl Biie |

Cus

—Heap C
I~ Add

Guard |

—Advanc

I Spe
Iy Stor

Application: /home/s/scinet/rzon/Code/diff 3d/diff3d

Details =

Application: |/home/s[scinet{rzon/Code/‘diff3d/‘diff3d

Arguments: |

Input File: |

Working Directory: |

¥ MPI: 2 processes, OpenMPI
Number of processes: |2 5:
Implementation: OpenMPI, no queue Change... |

Details =

mpirun arguments |
v OpenMP: 4 threads

Number of OpenMP threads: |4 EC

[T CUDA

v Memory Debugging: Minimal, No guard pages, Backtraces, Preload

Details =

Details

Details...

ff3d

Details =

Details

es, Backtraces, Preload

El

Details =

Details

Details...

| |—Adganced

Memory Debugging Options

[v Preload the memory debugging library: |

Note: Preloading only works for programs link
program is statically linked, you must relink it a

—Heap Debugging

o}

Minimal (fewest tests, picks up invalid poir
Runtime (fast, basic tests including fence-p
Low (adds minimal heap checking, overwr
Medium (adds full heap checking, always r

High (adds checking for arguments to com

. e @ @ @

Custom: |

—Heap Overflow/Underflow Detection

[~ Add guard pages to detect out of bounds

Guard pages: Il 5: Add guard pages:

Memory Debugging Options (on gpc-f102n084)

[v Preload the memory debugging library: Language: I ~|

Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library manually:

—Heap Debugging

O]

Minimal (fewest tests, picks up invalid pointers passed to memory functions)
Runtime (fast, basic tests including fence-post checking, null handling)

Low (adds minimal heap checking, overwriting of allocated/freed space)
Medium (adds full heap checking, always relocates block on realloc)

High (adds checking for arguments to common functions)

7YY Y D

Custom: [

—Heap Overflow/Underflow Detection
|~ Add guard pages to detect out of bounds heap access

Guard pages: |1 5: Add guard pages: Ia’-fter l

rAd!anced

Run and Debug a Program (session setup)

x DDT - Run (on gpc-f102n084)

h inetr; di

iff3d/diff3d

?

Details & —I

Application: [/home/s/scinet/rzon/Code/diff3d/diff3d

3 o

Arguments: |

=

Input File: |

3

Working Directory: [

¥ MPI: 2 processes, OpenMPI

Number of processes: |2 3:

2 g

mpirun arguments |
[V OpenMP: 4 threads
Number of OpenMP threads: |4 3:

I” cubAa

Environment Variables: none

Details &
Implementation: OpenMPI, no queue Change.
Details
Details
¥ Memory Debugging: Minimal, No guard pages, Backtraces, Preload Details.
Details v
Details v

Plugins: none

Cancel :]

Memory Debugging Options (on gpc-f102n084)

[¥ Preload the memory debugging library:

Language v
Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library manually

[-Heap Debugging
& Minimal (fewest tests, picks up invalid pointers passed to memory functions)
Runtime (fast, basic tests including fence-post checking, null handling)
Low (adds minimal heap checking, overwriting of allocated/freed space)

-~
~
¢ Medium (adds full heap checking, always relocates block on realloc)
¢ High (adds checking for arguments to common functions)

~

Custom: |

~Heap Overflow/Underflow Detecti

I Add guard pages to detect out of bounds heap access
Guard pages: [1 =] Add guard|pages: [After

~Adyanc

I~ Specify heap-check interval: [100 =
[V Store stack backtraces for memory allocations

I~ Only enable for these processes

0-1 100% | Select All X2 X0.5 1%

SciNet

User interface (1)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help
[s[w e REEElEE ! B-5-

|current Group: [All ~[Focus on current: # Group ¢ Process ¢ Thread | Step Threads Together

Al [o]
[o]

[2][=]

Create Group

Project Files &8 x ([diff3d.cco | Locals Current Line(s) | Current Stack |
Search (Ctrl+K) 3 L Hicurrent Line(s) e
o del = ! - i
= del_opu.cc _fyariable Name [vaiue |
v del_opvnt.cc = Const_int biec : =
= delete.c A1 int rank = MPT::COMM WORLD Get rank(: rank —32767
H@diff3d.cc P corr < "mthreads=" << nthrds << endl;
=t distances.c #includ= "mpidsbug.ch
=edivtf3.c mpi Commi t <Parameters> () ;
T — ;l_l ‘ - _»|;|Type: none selected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| Evaluate 8 x
Stacks & x |[Expression IVaIue |
Processes ITh reads | Function |
4 I:M [0 Jxgomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

User interface (2)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help

|

NEEN

|Current Group:
All

Create Group

DDT uses a tabbed-document interface. er

Project Files

& x| w

fadecal] 7

Search (Ctrl+K)

€)
P " RI

== del_opv.cc
== del_opvnt.cc
+cdelete.c
g @diff3d.cc
+edistances.
=edivtf3.c

1

const int nthrds
const int root
const int size

t_num_threads () ;

: COMM_WORLD.Get_size();

81 int rank = 1P

COM_WORLD . G=t_rank () ;

cerr << "nthreads < nthrds <<
#includs "mpidsbug.ch

mpiCommi t<Paramstera> () ;

;lﬂ‘ R

endl;

il

ocals Current Line(s) I Current Stack |
Current Line(s) 2
Variable Name |Va|ue |

[~
#MPI::COMM_...

rank —32767

[Type: none selected

Stacks

Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output|

Evaluate 8 x
Expression IVaIue |

&

x

Processes ITh reads

|Function

4

4 I:M =gomp_thread_start (team.c:120)

main (diff3d.cc:81)

4 l:|4 [J#*mxm_event_cleanup

User interface (3)

Allinea DDT v3.1 (on gpc-f102n084)
Session Control Search View Help

[o[u @@ @ Oecleg ez 1 -
|Current Group: [Al

When the session begins, DDT automatically

finds source code from information compiled in
the executable.

Root

Workers

Create Group

Project Files &8 x ([diff3d.cco | Locals Current Line(s) | Current Stack |
Search (Ctrl+K) 5 .

MET : :COMM_WORI .. Acurrent Line(s) 8 x
= Z‘ 1 "
=@ del_opv.cc const int nihed o Variable Name |Va|ue |
+=del_opvnt.cc || const int roo #MPI::COMM_...

const int siz

0

get_nunlthreads () ;

1P1 : : COMMI WORLD . Get_size () ;

= delete.c A1 int rank = MPT::COMM WORLD Get rank(: rank —32767
B@diff3d.cc P corr < "mthreads=" << nthrds << endl;
+ e distances.c #includs "mpidsbug.ch
wodivtf3.c mpiConmit <Parameters> () ;
T — ;l_l ‘ - _»|;|Type: none selected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| Evaluate 8 x
Stacks & x |[Expression IVaIue |
Processes ITh reads | Function |
4 I:M =gomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

User interface (4)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help
[P0 B a3 REBELEEIE | A-D-

|current Group: [All ~[Focus on current: # Group ¢ Process ¢ Thread | Step Threads Together
Al BN EXEN
ROO Izl

o BB T

Create Group

Project Files 2l gt . Bialine(s) I Current Stack |
Search (Ctrl+K)

8 x

el opuee Process Control and Process Groups:

== del_opvnt.cc
= delete.c

ey » Predefined groups All, Root, Workers.

=edivtf3.c 3 R H

e (Session—options, automatically create)
Input/Output* | B
Stacks

drop, right click stacks, ..
A A

4 I /N Emain (diff3d.cc:81)
44 J=mxm_event_cleanup

» Can group process together.

» Can create, delete modify groups (drag

)

Ready ,
WG HINTL

User interface (5)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help

[o[i Ba 3 REEIEEIEE | A-D-

|current Group: [Al . - . |

=

Different colour coding for each group’s current
Root source line.

Workers

Create Group

Project Files &8 x ([diff3d.cco | Locals Current Line(s) | Current Stack |
Search (Ctrl+K) . o ~ Allcurrent Line(s) EE
= =) N
+=del_opv.cc B st tnt e o Variable Name |Va|ue |
=@ del_opvnt.cc = e #MPI::COMM_...
« ¢ delete.c 81 int rank = P rank —32767
Bmdiff3d.cc P corr < "mthreads=" << nthrds << endl;
« o distances.c #includs "mpidsbug.ch
=edivtf3.c mpi Commi t <Parameters> () ;
T — ;l_l ‘ - _»|;|Type: none selected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| Evaluate 8 x
Stacks & x |[Expression IVaIue |
Processes ITh reads | Function |
4 I:M [0 Jxgomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
44 J=mxm_event_cleanup

User interface (6)

Allinea DDT v3.1 (on gpc-f102n084)
Session Control Search View Help

[0 B85 KEEIGEIE | -0 <«
|current Group: [All ~[Focus on current: # Group ¢ Pfocess ¢ Thread | Step Threads Together

& [oJ[2 2]

. Session Control Dialog:
T Control program execution, e.g., play/continue,
Project Files pause, step into, step over, step out ne(s) | current stack |

Search (Ctrl+K) & x

) del:opv.cc

Variable Name [Value

const int nthrd:

g=t_num_thr=ads () ; ! MPI-COMM
» = del_opvnt.cc = Senet int seot S8y e i ZCOMM_..
= delete.c A1 int rank = MPT::COMM WORLD Get rank(: rank —32767
B@diff3d.cc cerr << "nthreads=" << nthrds << =ndl;
= ¢ distances.c #include "mpidebug.ch
=edivtf3.c mpi Commi t <Parameters> () ;
T — ;l_l _»ﬁl ype: none selected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| Evaluate ax
Stacks & x |[Expression IVaIue |
Processes ITh reads | Function |

4 I:M [0 Jxgomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

User interface (7)

Allinea DDT v3.1 (on gpc-f102n084)
Session Control Search View Help

o] a3 BEELEGEIEE ! OO~

|current Group: [All ~[Focus on current: # Group ¢ Process ¢ Thread | Step Threads Together

Al [o][2][2]
(3]

- diff3d.cc@ |

Create Group
Project Files
Search (Ctrl+K)

xl‘

Locals Current Line(s) I Current Stack |

8 x
+mdel_opv.cc Breakpoints Tab
=@ del_opvnt.cc

s ¢ delete.c Can suspend, jump to, delete, load, save
e @diff3d.cc

+ e distances.c

=edivtf3.c
T C _[_I ype: none selected
Input/Output* | Breakpﬂ‘;\ts | Watchpoints Stacks | Tracepoints | Tracepoint Output | Evaluate =X
Stacks & x |[Expression |Va|ue |
Processes ITh reads | Function |

4 I:M [0 Jxgomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

User interface (8)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help
[s[vEHas REEElE | B-5-

|current Group: [All JFocus on current: ¢ Group ¢ Process « Thread |- Step Threads Together H

Al E] 2 ¥ s
[o |

orke Focus:
CreateiGioup Choose between Group, process or thread

Project Files
Search (Ctrl+K)

ne(s) I Current Stack |

8 x
@ del_ B ') Variable Name |Value |

i el_opv.cc const int nthrds t_num_thr=ads () ; - MPI--COMM

v del_opvnt.cc = Const_int biec : =

= delete.c A1 int rank = MPT::COMM WORLD Get rank(: rank —32767

Bmdiff3d.cc cerr << "nthreads=" << nthrds << endl;

= distances.c #includs "mpidsbug.ch

=wdivtf3.c
T — ;l_l _»|;|Type: none selected

Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| Evaluate 8 x
Stacks & x |[Expression IVaIue |
Processes IThreads |Function |

4 I:M =gomp_thread_start (team.c:120)

4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

User interface (9)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help

>0 B8 0 RFTTAE T~

ep Threads Together

Stacks: Current and Parallel
» Tree of functions (merged)

» Click on branch to see source

Locals Current Line(s) | Current Stack |
Current Line(s) 2

» Use to gather processes in new groups R [value |

» Hover to see process ranks

creTeTe- - S rank —32767
g @diff3d.cc :
+ e distances.c
=edivtf3.c
T — _'l_I _»[:I ype: none selected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint 0utput| Evaluate ax
Stacks & x |[Expression |Va[ue |
Processes ITh reads | Function |
4 I:M #gomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:M [J#*mxm_event_cleanup

User interface (9)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help

fDi:P_r RERL Mok

ep Threafs Together

Stacks: Current and Parallel

» Tree of functions (merged)

» Click on branch to see source

Locals |[Current Line(s) | Current Stack |
Current {fne(s) 21
» Use to gather processes in new groups ol [Value |

rank -

» Hover to see process ranks

—32767

g @diff3d.cc
+ e distances.c
=edivtf3.c
T — _'l_l _»[:l ype: none selected
Input/Output* | Breakpoints | Watchpoints S%:{acepoints | Tracepoint 0utput| Evaluate ax
Stacks & x |[Expression |Va[ue |
Processes IThreads |Function |
4 I:M =gomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
44 J=mxm_event_cleanup

User interface (10)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search

Root
Workers
Create Group
Project Files 8 x| diff3d.cc@ | Locals CWne(s) | current stack |
Search (Ctrl+K) 3 L Hicurrent Line(s) B
o del = ! - i
HE del_opv.cc const int nthrds t_num_threads () ; — il Lol Dl |Va|ue |
»# del_opvnt.cc = Somnt d2E Eok D 8 s et size0) 7MPI:COMM._...
«®delete.c 3 int rank = WPI::COMM_WORLD.G=t_rank(); rank —32767
Bmdiff3d.cc P corr < "mthreads=" << nthrds << endl;
« o distances.c #includs "mpidsbug.ch
=edivtf3.c mpi Commi t <Parameters> () ;
T — ;l_l ‘ - _»|;|Type: none selected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| Evaluate 8 x
Stacks & x |[Expression IVaIue |
Processes IThreads |Function |
4 I:M [0 Jxgomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

User interface (11)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search View Help
DR :
| current Group: [~ @l Local variables for process :

All

ROO IZ'

Create Group

[2][=]

Project Files 8 x|« diff3d.cc@ | Mcals current Line(s) I Current Stack |
Search (Ctrl+K) . L Hicurrent Line(s) e
v del | ! i
= del_opu.cc _fyariable Name [vaiue |
v del_opvnt.cc = Const_int biec : =
« & delete.c 81 int rank = MPI::COMM WORLD-G=t rank(); rank —32767
H@diff3d.cc P corr < "mthreads=" << nthrds << endl;
« ¢ distances.c #includs "mpidsbug.ch
=edivtf3.c mpi Commi t <Parameters> () ;
T — ;l_l ‘ - _»|;|Type: none selected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| Evaluate 8 x
Stacks & x |[Expression IVaIue |
Processes ITh reads | Function |
4 I:M [0 Jxgomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

User interface (12)

Allinea DDT v3.1 (on gpc-f102n084)

Session Control Search

Root
Workers
Create Group
Project Files 8 x|« diff3d.cc@ | ocals Current Line(s) I Current Stack |
Search (Ctrl+K) © L o o Alcukrent Line(s) B
wdel | !)
HE del_opv.cc const int nthrds t_num_threads () ; — Varhble NAme |Va|ue |
»# del_opvnt.cc = Somnt d2E Eok D 8 s et size0) TMPL\COMM._...
= delete.c A1 int rank = HPI::COMN WORLD.G=t rank(); rank —32767
H@diff3d.cc P corr < "mthreads=" << nthrds << endl;
+ ¢ distances.c #include "mpidsbug.ch
=edivtf3.c mpi Commi t <Parameters> () ;
T — ;l_l ‘ - _»|;|Type: none sklected
Input/Output* | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint Output| E\)qluate 8 x
Stacks 8 x Exb(ession |Va|ue |
Processes IThreads |Function |
4 I:M [0 Jxgomp_thread_start (team.c:120)
4 main (diff3d.cc:81)
4 l:|4 [J#*mxm_event_cleanup

First Demonstration DDT

L= I A

cd $SCRATCH/debug/code
source setup

cd bugexample

make

ddt bugexample

Other features of DDT (1)

» Some of the user-modified parameters and windows are saved
by right-clicking and selecting a save option in the
corresponding window (Groups; Evaluations)

» DDT can load and save sessions.

» Find and Find in Files in the Search menu.

» Goto line in Search menu (or Ctrl-G)

» Synchronize processes in group: Right-click, "Run to here".

» View multiple source codes simultaneously: Right-click,
“Split”

» Right-click power! 5/éi:N
2CTNet

Other features of DDT (2)

v

Signal handling: SEGV, FPE, PIPE,ILL

v

Support for Fortran modules

v

Change data values in evaluate window

» Examine pointers (vector, reference, dereference)

v

Multi-dimensional arrays

v

Viewer

Other features of DDT (3)

Memory debugging

» Select “memory debug” in Run window
» Stops on error (before crash or corruption)
» Check pointer (right click in evaluate)

» View, overall memory stats

Demonstration Memory Debugging with DDT

cd $SCRATCH/debug/code
source setup

cd ex4

make

$ ddt ex4

A A N A

Parallel debugging
e e
0 SR

P P

P P

0

%

0 ;;

%
e é
%

Parallel debugging - 1 Shared memory
Use gdb for

» Tracking each thread’s execution and variables
» OpenMP serialization: p omp_set num threads(1)
» Stepping into OpenMP block: break at first line!

» Thread-specific breakpoint: b <line> thread <n>

Parallel debugging - 1 Shared memory
Use gdb for

» Tracking each thread’s execution and variables
» OpenMP serialization: p omp_set num threads(1)
» Stepping into OpenMP block: break at first line!

» Thread-specific breakpoint: b <line> thread <n>

Use helgrind for

» Finding race conditions:

$ module load valgrind
$ valgrind --tool=helgrind <exe> &> out

$ grep <source> out

where <source> is the name of the source f||e where yousﬁm
race conditions (valgrind reports a lot more) et

Shared memory debugging with DDT

Or use DDT:

Thread debugging example

cd $SCRATCH/debug/code
source setup

cd exb

make

ddt ex5

hH A N A N

Parallel debugging - 2 Distributed memory
Multiple MPI processes

» Your code is running on different cores!
» Where to run debugger?

» Where to send debugger output?

» Much going on at same time.

» No universal free solution.

Parallel debugging - 2 Distributed memory
Multiple MPI processes

» Your code is running on different cores!
» Where to run debugger?

» Where to send debugger output?

» Much going on at same time.

» No universal free solution.

Good approach:

1. Write your code so it can run in serial: perfect that first.

2. Deal with communication, synchronization and deadlock on
smaller number of MPI processes/threads.

3. Only then try full size.

Parallel debugging demands specialized tools: ddt &éﬁ\l@t

Demonstration MPI Debugging with DDT

cd $SCRATCH/debug/code
source setup
cd ex2

A A N A

make
$ ddt ex2

Detecting deadlock with DDT

Message Queue

» View — show message queue

» produces both a graphical view and table for active

communications
» Helps to find e.g. deadlocks
8006 \ DDT - Message Queues

- Select queues to show
wE
¥ Receive

¥ Unexpected

¢ Show local ranks

& Show global ranks

[~ Select communicator

MPI_COMM WORLD

MP{_COMM_SELF
MP1_COMM_NULL

et

Demonstration MP| Message Queue in DDT

cd $SCRATCH/debug/code
source setup

cd ex3

make

$ ddt ex3

A A N A

Useful references

v

N Matloff and PJ Salzman
The Art of Debugging with GDB, DDD and Eclipse

» GDB: sources.redhat.com/gdb
» DDT: www.allinea.com /knowledge-center/tutorials
» SciNet Wiki: wiki.scinethpc.ca: Tutorials & Manuals

Scifet

http://sources.redhat.com/gdb
http://www.allinea.com/knowledge-center/tutorials
http://wiki.scinethpc.ca/wiki/index.php/Knowledge_Base:_Tutorials_and_Manuals

