
Part IV

C++ as a better C

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 35 / 124

Nice C++ features

1 Comment style

2 Declare variables anywhere

3 Namespaces

4 Improved I/O approach

5 References

6 Improved memory allocation

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 36 / 124

Nice C++ features: Comment style

C comments start with /* and end with */

C++ allows comments which start with // and last until the
end-of-the-line.

In addition, C-style comments are still allowed.

C99 shares this nicety.

Example

C:

/* This is a C comment*/

C++:

// This is a C++ comment

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 37 / 124

Nice C++ features: Declare variables anywhere

C: variables are declared at start of function or file.

C++: you can mix statements and variable declarations.

C99 shares this nicety.

Example

C:

double f() {
double a,b;
int c;
a=5.2;
b=3.1;
for (c=0; c < 10; c++)

a+=b;
return a;

}

C++:

double f() {
double a=5.2, b=3.1;
for (int c=0; c < 10; c++)

a+=b;
return a;

}

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 38 / 124

Nice C++ features: Namespaces

In larger projects, name clashes can occur.

I had a 3d vector struct called vector. Then came along the Standard
Template Library, which defined vector to be a general array. Before

namespaces, I had to rename vector to Vector in all my code.

No more: put all functions, structs, . . . in a namespace:

namespace nsname {
...

}

Effectively prefixes all of ... with nsname::

Many standard functions/classes are in namespace std.

To omit the prefix, do “using namespace nsname;”

Can selectively omit prefix, e.g., “using std::vector”

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 39 / 124

Nice C++ features: I/O streams

Standard input/error/output

Streams objects handle input and output.

All in namespace std.

Global stream objects (header: <iostream>)

cout is for standard output (screen)
cout is the standard error output (screen)
cin is the standard input (keyboard)

Use insertion operator << for output:

std::cout << "Output to screen!" << std::endl;

(endl ends the line and flushes buffer)

Use extraction operator >> for input:

std::cin >> variable;

These operators figure out type of data and format.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 40 / 124

Nice C++ features: I/O streams

File stream objects (header: <fstream>)

ofstream is for output to file.
Declare with filename: good to go!

std::ofstream file("name.txt");
file << "Writing to file";

ifstream is for input from a file.
Declare with filename: good to go!

std::ifstream file("name.txt");
int i;
file >> i;

Can also open and close by hand.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 41 / 124

Nice C++ features: I/O streams

Example

C:
double a,b,c;
FILE* f;
scanf(f, "%lf %lf %lf", &a, &b, &c);
f = fopen("name.txt","w");
fprintf(f, "%lf %lf %lf\n", a, b, c);
fclose(f);

C++:

using namespace std;
double a,b,c;
cin >> a >> b >> c;
ofstream f("name.txt");
f << a << b << c << endl;

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 42 / 124

Nice C++ features: I/O Streams

Formatting (header: <iomanip>)

Set width of next output:

double d = 14.545;
cout << "[" << setw(10) << d << "]" << endl;

[14.525]
Set significant digits of output to follow:

cout << "[" << setprecision(3) << d << "]" << endl;

[14.5]

Set precision of next output:

cout << setw(9) << setfill('#') << d << endl;

#####14.5

Change to scientific notation

cout << scientific << d << endl;

1.454e+01(revert with fixed)

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 43 / 124

Nice C++ features: I/O Streams

Gotcha: text (ASCII) versus binary I/O

While easy, writing ASCII is rarely the best choice in scientific code.
“What is wrong with ASCII,” you ask, “isn’t it nice that it is readable?”

ASCII typically doesn’t preserve the data’s accuracy.

ASCII typically takes more space than writing binary.

Writing and reading ASCII is much slower than binary:
Writing 128M doubles
Format /scratch (GPFS) /dev/shm (RAM) /tmp (disk)

ASCII 173s 174s 260s
Binary 6s 1s 20s

Writing binary

std::ofstream has a write(char*,int) member function.
std::ifstream has a read(char*,int) member function.
Remember sizeof!

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 44 / 124

Nice C++ features: References

A reference gives another name to an existing object.

References are similar to pointers.

Do not use pointer dereferencing (->), but a period .

Cannot be assigned null.

Standalone definition (rare)

type & name = object;

object has to be of type type.

name is a reference to object.

name points to object, i.e., changing name changes object.

Members accessed as name.membername (as you would for object).

Definition as arguments of a function

returntype functionname(type & name, ...);

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 45 / 124

Nice C++ features: References

Example

To change a function argument, need a pointer in C:

void makefive(int * a) {
*a = 5;

} ...
int b = 4;
makefive(&b); /* b now holds 5 */

C++: can pass by reference using &:

void makefive(int & a){
a = 5;

} ...
int b = 4;
makefive(b); /* b now holds 5 */

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 46 / 124

Nice C++ features: References

Gotcha: Avoid copies of objects in function calls

Compare these two functions

struct Point3D {
double x,y,z;

};
void print1(Point3D a){

std::cout << a.x << ' ' << a.y << ' ' << a.z << std::endl;
}
void print2(Point3D& a){

std::cout << a.x << ' ' << a.y << ' ' << a.z << std::endl;
}

Calling print1 copies the content of a to the stack (24 bytes).

Calling print2 only copies the address of a to the stack (8 bytes).

Memory copies are not cheap!

If we do this with classes, a so-called constructor is called everytime
print1 is called, whereas print2 still only copies 8 bytes.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 47 / 124

Nice C++ features: Improved memory allocation

Basic allocation
type* name = new type;

Allocation with initialization
type* name = new type(arguments);

Array allocation

type* name = new type[arraysize];

Basic de-allocation
delete name;

Array de-allocation

delete [] name;

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 48 / 124

Nice C++ features: Improved memory allocation

Example

struct credit {
long number, balance;

};

No more of this mess:
#include "stdlib.h"
struct credit* a;
double * b;
a = (struct credit*)malloc(sizeof(struct credit));
b = (double *)malloc(sizeof(double)*10000);
...
free(a); free(b);

Instead, simply:

credit* a = new credit;
double * b = new double [10000];
...
delete a; delete[] b;

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 49 / 124

HANDS-ON 1:
Use these nice c++ features to rewrite the matrix routines and the main
function.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 50 / 124

Hands-on 1 - instructions

Make a directory for this course in your home directory, e.g.

$ mkdir scinetc++
$ cd scinetc++

Copy the example directory from scinetcppexamples.tgz

This is the matrix example that we looked at after the c review.

Work from that new directory:

$ cd example

Try to build the code

$ make

If successful, try to execute the program

$./main

Every with me so far?

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 51 / 124

Hands-on 1 - instructions continued

Copy the example directory to example nice, and work there:

$ cd ..
$ cp -r example example nice
$ cd example nice

This will be the first c++ version of the matrix example.

Rename a the .c files to .cpp files:

$ mv main.c main.cpp
$ mv mymatrix.c mymatrix.cpp

Copy the makefile for this set of files from the example nice directory
in scinetcppexamples.tgz.

Try to build and run the code

$ make
$./main

Still with me?
Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 52 / 124

Hands-on 1 - instructions continued

Modify the code to use (one at a time):

1 C++ comment style

2 Declarations of iteration variables in for loops

3 Improved memory allocation

4 Improved I/O

5 References

Test that the code builds and runs after implementing each feature.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 53 / 124

Hands-on 1 - answers

If you did not quite get there, or if you have a few remaining bugs:

Copy the c++ version I made, from the example nice directory in
scinetcppexamples.tgz, so we can continue later.

Test that the code builds and runs.

Be sure to look at the source code and see if it make sense to you.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 54 / 124

