Part IV

C++ as a better C

Scilet

) compute ca\cu\

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C+-+ March 15, 2011 35 /124

Nice C++ features

@ Comment style

@ Declare variables anywhere
© Namespaces

© Improved 1/0O approach

© References

@ Improved memory allocation

Scilet

) compute ca\cu\

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 36 / 124

Nice C++ features: Comment style

C comments start with /* and end with */

C++ allows comments which start with // and last until the
end-of-the-line.

In addition, C-style comments are still allowed.
C99 shares this nicety.

v

C: (G

/* This is a C comment*/ // This is a C++ comment

cSél?\let

CANADA

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 37 /124

Nice C++ features: Declare variables anywhere

@ C: variables are declared at start of function or file.
@ C++: you can mix statements and variable declarations.

@ (99 shares this nicety.

C:
double £() { C++:
:::bij a,b; double £() {
. double a=5.2, b=3.1;
b=3.1; for (int c=0; ¢ < 10; c++)
for (c=0; c < 10; c++) i
return a;
a+=b;
return aj; ’
}

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 38 /124

Nice C++ features: Namespaces

@ In larger projects, name clashes can occur.
I had a 3d vector struct called vector. Then came along the Standard
Template Library, which defined vector to be a general array. Before
namespaces, | had to rename vector to Vector in all my code.
@ No more: put all functions, structs, ...in a namespace:

namespace nsname {

}

o Effectively prefixes all of ... with nsname::

@ Many standard functions/classes are in namespace std.

@ To omit the prefix, do “using namespace nsname;”

o Can selectively omit prefix, e.g., “using std::vector”
e TR
Q) s

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C+-+ March 15, 2011 39 /124

Nice C++ features: 1/O streams

Standard input/error/output

@ Streams objects handle input and output.

@ All in namespace std.
@ Global stream objects (header: <iostream>)

e cout is for standard output (screen)
e cout is the standard error output (screen)
e cin is the standard input (keyboard)

@ Use insertion operator << for output:
std::cout << "Output to screen!' << std::endl;
(end1 ends the line and flushes buffer)

@ Use extraction operator >> for input:

std::cin >> wvariable;

@ These operators figure out type of data and format.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 40 / 124

Nice C++ features: 1/0O streams

File stream objects (header: <fstream»)
@ ofstream is for output to file.
Declare with filename: good to go!

std::ofstream file(''name.txt");
file << "Writing to file";

@ ifstream is for input from a file.
Declare with filename: good to go!

std::ifstream file("name.txt");

int 1i;

file >> 1i;

@ Can also open and close by hand.

ch?\let

’ compute ca\cu\

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C+-+ March 15, 2011 41 / 124

Nice C++ features: 1/0O streams

C:
double a,b,c;
FILE* f£f;
scanf (£, ")/1f %1f J1f", &a, &b, &c);
f = fopen('name.txt","w");
fprintf (£, "/1f %1f /1f\n", a, b, c);
fclose(£);

CH+:
using namespace std;
double a,b,c}
cin >> a >> b >> c;
ofstream f("name.txt");
f << a << b << ¢ << endl;

v

(’ compute «calcul
CANADA

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 42 /124

Nice C++ features: 1/O Streams

Formatting (header: <iomanip>)

@ Set width of next output:

double d = 14.545b;
cout << "[" << setw(10) << d << "]" << endl;

L 14.525]

@ Set significant digits of output to follow:
cout << "[" << setprecision(3) << d << "]" << endl;

@ Set precision of next output:

cout << setw(9) << setfill(’#’) << d << endl;
#3#4#14.5

@ Change to scientific notation

cout << scientific << d << endl;

(revert with fixed) 1.4540+01

y
Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 43 / 124

Nice C++ features: 1/O Streams

Gotcha: text (ASCII) versus binary 1/0
While easy, writing ASCII is rarely the best choice in scientific code.
“What is wrong with ASCII,” you ask, “isn't it nice that it is readable?”
o ASCII typically doesn't preserve the data’s accuracy.
@ ASCII typically takes more space than writing binary.
@ Writing and reading ASCII is much slower than binary:
Writing 128M doubles

Format || /scratch (GPFS) | /dev/shm (RAM) | /tmp (disk)
ASCII 173s 174s 260s
Binary 6s 1s 20s

Writing binary
std::ofstream has a write(char*,int) member function.
std::ifstream has a read(char*,int) member function.

Remember sizeof !

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 44 /124

Nice C++ features: References

@ A reference gives another name to an existing object.
@ References are similar to pointers.

@ Do not use pointer dereferencing (->), but a period .
°

Cannot be assigned null.

Standalone definition (rare)

type & name = object;

@ object has to be of type type.

@ name is a reference to object.

@ name points to object, i.e., changing name changes object.

@ Members accessed as name.membername (as you would for object).
Definition as arguments of a function

returntype functionname(type & name, ...)}

V.
Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 45 / 124

Nice C++ features: References

To change a function argument, need a pointer in C:

void makefive(int * a) {

*a = b;
} ...
int b = 4;

makefive(&b); /* b now holds 5 */

C++: can pass by reference using &:

void makefive(int & a){
a =b5;
} ..
int b = 43
makefive(b); /* b now holds 5 */

v
QCMet
(’ compzxitr?; Ei\cu\

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 46 / 124

Nice C++ features: References

Gotcha: Avoid copies of objects in function calls

Compare these two functions

struct Point3D {
double x,y,z;

}s
void printl(Point3D a){
std::cout << a.x << ? ? << a.y << 7 ? K< a.z << std::endl;

}
void print2(Point3D& a){

std:icout << a.x << ? ? KK a.y << ? ? KL a.z << std::endl;
}

o Calling print1 copies the content of a to the stack (24 bytes).

e Calling print2 only copies the address of a to the stack (8 bytes).
@ Memory copies are not cheap!
°

If we do this with classes, a so-called constructor is called everytime
print1 is called, whereas print2 still only copies 8 bytes.

4
Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C+-+ March 15, 2011 47 / 124

Nice C++ features: Improved memory allocation

Basic allocation
type* mame = new types

Allocation with initialization
type* name = new type(arguments);

Array allocation

type* name = new typelarraysizel;

Basic de-allocation
delete mame;

Array de-allocation

delete [1 name;

v

(’ compute «calcul
CANADA

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 48 / 124

Nice C++ features: Improved memory allocation

struct credit {
long number, balance;

}s

No more of this mess:
#include "stdlib.h"

struct credit* a;
double * b;

a = (struct credit*)malloc(sizeof (struct credit));
b = (double *)malloc(sizeof (double)*10000);

free(a); free(b);
Instead, simply:
credit* a =

double * b = new double [10000];

new creditj

delete a; delete[] b;

Ramses van Zon, Scott Northrup (SciNet)

Intro Scientific Programming in C++

March 15, 2011 49 / 124

HANDS-ON 1:
Use these nice c++ features to rewrite the matrix routines and the main
function.

Scilet

’ compute ca\cu\

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 50 / 124

Hands-on 1 - instructions

@ Make a directory for this course in your home directory, e.g.

$ mkdir scinetc++
$ cd scinetc++

@ Copy the example directory from scinetcppexamples.tgz
This is the matrix example that we looked at after the c review.
@ Work from that new directory:

$ ca example

@ Try to build the code
$ make

@ If successful, try to execute the program

$./main

Schet

Every with me so far? Q@ o

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 51 /124

Hands-on 1 - instructions continued

@ Copy the example directory to example nice, and work there:

$cd..
$ cp -r example example nice
$ cd example nice

This will be the first c++ version of the matrix example.
@ Rename a the .c files to .cpp files:
$ mv main.c main.cpp

$ mv mymatrix.c mymatrix.cpp

@ Copy the makefile for this set of files from the example nice directory
in scinetcppexamples.tgz.

@ Try to build and run the code

$ make
$./main
rNet
Stl” Wlth me7 (’ Com%tf;ﬁ‘cu‘

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 52 /124

Hands-on 1 - instructions continued

Modify the code to use (one at a time):
@ C++ comment style
@ Declarations of iteration variables in for loops
© Improved memory allocation
© Improved 1/0
© References

Test that the code builds and runs after implementing each feature.

cSc:I?\let

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 53 / 124

Hands-on 1 - answers

If you did not quite get there, or if you have a few remaining bugs:
@ Copy the c++ version | made, from the example nice directory in
scinetcppexamples.tgz, SO we can continue later.
@ Test that the code builds and runs.

@ Be sure to look at the source code and see if it make sense to you.

Scilet

’ compute ca\cu\

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 54 / 124

