Scientific Computing (Phys 2109/Ast 3100H)
|. Scientfic Software Development

SciNet HPC Consortium

University of Toronto

Winter 2013

Scilet



Part |

Introduction to Software Development

Scilet



Lecture 8

Course project

Object-Oriented Programming in Python

Mixing C++ and Python

Scilet



Course project: Where are we going?

» Two dimensional diffusion equation for density field p(r, t)

8p_D 9%p 9%
ot ox2 " oy? )’

» Tracer particle satisfies ODE
mit = F — a(p(R)R,

where m is mass, F is force and « is viscosity.

» Ad hoc form for density dependent friction constant a:

a(p) = ag(1 + ap).
» Ad hoc form for force, like a constant electric field:

Scilet



Course project: Where are we going?

» Periodic boundary conditions in all directions
r ~r+ L(kx + 1y).

L is the length of the side of the box, k and | integer.
> Initial conditions:

p(r) = exp [—!r”;] ;
]

R(0) = Ry,

R(0) = Vo.

» Values for the parameters (arbitrary) are

D=1,m=1,a90=1,a=15,qE=1; L = 10; i
oo=1;, Rgp =0; Vo =10y Met



Classes in Python

As in C++, Python uses classes to group together data
and code, accessing them with '." operator

We could also do this with modules. But there can be only
one instance of a module, and many instances of a class.

Inheritance: multiple base classes, derived class can
override any methods of its base class or classes, and
method can call a base class method with the same name.

Objects can contain arbitrary amounts and kinds of data.

Classes partake of the dynamic nature of Python: created
at runtime, and can be modified further after creation.

aSeﬁ\let

AAAAAAA



Easy cases

Collection of variables

Source 1: applel and
apple2 share colour
(class variable); tricky.

Source 2: works, but
now we have to assign
each member.

Anything more workable
requires writing a
constructor.

Source 1
class Apple:

type = "Delicious"

colour = "Green"

cSei?\let

AAAAAA



Easy cases
Source 1

class Apple:
type = "Delicious"
colour = "Green"
Collection of variables applel = Apple()
apple2 = Apple()
Source 1: applel and Apple.colour = "Golden"
1e2 sh 1 print applel.colour
apple2 share colour [Golden]

(class variable); tricky.

Source 2: works, but
now we have to assign
each member.

Anything more workable
requires writing a
constructor.

cSeﬁ\let

AAAAAA



Easy

Collection of variables

Source 1: applel and
apple2 share colour
(class variable); tricky.

Source 2: works, but
now we have to assign
each member.

Anything more workable
requires writing a
constructor.

cases
Source 1

class Apple:
type = "Delicious"

colour = "Green"
applel = Apple()
apple2 = Apple()

Apple.colour = "Golden"
print applel.colour
[Golden]

Source 2

class Apple:
pass

et

sute « calcul

CANADA



Easy cases

Collection of variables

Source 1: applel and
apple2 share colour
(class variable); tricky.

Source 2: works, but
now we have to assign
each member.

Anything more workable
requires writing a
constructor.

Source 1

class Apple:
type = "Delicious"
colour = "Green"

applel = Apple()

apple2 = Apple()
Apple.colour = "Golden"
print applel.colour
[Golden]

Source 2

class Apple:
pass

applel = Apple()
applel.type = "Delicious"
applel.colour = "Green"
apple2 = Apple()
apple2.type = "Delicious"
apple2.colour = "Golden"
print applel.colour
[Green]

D w——

te « calcul
NADA



Using a constructor

class Apple:

» Collection of variables def __init__(self):
self.type = "Delicious"
» Same def keyword to self.colour = "Green"
define methods. applel = Apple()

apple2 = Apple()
print applel.colour

» Constructor name is
[Greenl]

__init__

cSél?\let

AAAAAA



Class syntax in Python

Methods take a first
argument that is an
instance of the class

This argument is explicit
(self) in definition but
implicit in calls.

In methods, refer to
member fields as
self.field.

No separation
interface/implementation

class Apple:

def __init_(self):
self.type =
self.colour =

def describe(self):
print self.type,
print self.colour

"Green"

applel = Apple()
apple2 = Apple()
print applel.colour
[Green]

applel.describe()
[Delicious Greenl]

"Delicious"

cSei?\let

AAAAAA



More special methods

__del__
A kind of destructor.

__str__
Converts object to a string for output. Used by print.
Intended to be readable by users.

__repr__

Returns a string representation for the object. Used by
python (e.g., if you just type the name of an object).
Intended to be understandable by developers.

Scilet



Example: Tracer Particle

class Tracer:
def __init_ (self,x0,y0,vx0,vy0):

self.t = 0.0
self.x = x0
self.y = yO

self.vx = vx0
self.vy = vy0
def timeStep(self,dt):
self.t += dt
self.x += dx*self.vx
self.y += dx*self.vy
def write(self):
print self.t, self.x, self.y

tr = Tracer(0.0,1.0,-1.0,2.0)
while tr.t < 10.0:
tr.timeStep(0.1);

tr.write() S/éﬁ\]et

" compute «calcul
CANADA



Inheritance in Python

Need to discuss this for
completeness’ sake

Put classes to derive
from between
parenthesis.

Inheritance

Two kinds of classes:
old and new style

For multiple inheritance

and operator overloading.

To get new style, inherit
from object class

class NamedTracer(Tracer):
def __init__(self,a,b,c,d,name):
Tracer.__init__(self,a,b,c,d)
self.name = name

= NamedTracer(1.,2.,-1.,0.,"A1")

Scilet

) compute ca\cu\



Inheritance in Python

Need to discuss this for
completeness’ sake

Put classes to derive
from between
parenthesis.

Inheritance

Two kinds of classes:
old and new style

For multiple inheritance

and operator overloading.

To get new style, inherit
from object class

class NamedTracer(Tracer):
def __init__(self,a,b,c,d,name):
Tracer.__init__(self,a,b,c,d)
self.name = name

= NamedTracer(1.,2.,-1.,0.,"A1")

New style class

class Tracer(object):
#...

Scilet

) compute ca\cu\



Mixing C+4 and Python

Scilet



v

v

v

v

v

Mixing C++4 and Python

Python is versatile and quick to write in
C++ is fast

Let’'s combine them: best of both worlds

Ideally:
» Have a blazingly fast module in C++
» Compile it
» Import it into Python, and start playing

» Can then write test and driver code in Python

Simple idea. Implementation is a harder. And non-unique.

Scilet



v

v

v

Why isn’t this straightforward?

Objects in Python very different from objects in C/C++

The Python C-API exposes all the nitty gritty of making
Python work.

A .o file is not a Python module.

C++ compiler and Python have to be binary compatible.

SciNet



What's involved in getting this to work?

v

Need to create a 'Python extension module’

v

That module needs to load a dynamic library (if it isn't a
dynamic library itself).

v

So we need to build a dynamic library from the C++ code.

v

And we create a Python extension module.

v

For which we'll have to write some wrapper code.

SciNet



Many automating frameworks. . .

v

Python C-API

v

SWIG

v

Boost.Python

v

Cython

| S

This is getting hairy... and yet somehow this is very popular.

Scilet



Boost Python

Boost: large collection of useful c++ libraries. (so useful
that some parts have made it into the next c++ standard)

Boost Python: framework for interfacing Python and
C++.

CH+ specific, but same issues for other interfaces.

Should be able to translate a C++ class structure into a
python class structure.

Boost likes the bjam automated build systems, but we can
just use g++ or make.

Scilet



Boost Python - example 1

» C++ code:

//hi.h

#ifndef HIH

#define HIH

char const* greet();
#endif

//hi.cc

#include "hi.h"

char const* greet() {
return "hi world";

}

» Python code:

#usehi.py
import hi
print hi.greet()

cSﬁNet

AAAAA



Boost Python - example 1
» C++ code:
//hi.cc
#include "hi.h"
char const* greet() {
return "hi world";

}

Scilet



Boost Python - example
» C++ code:
//hi.cc
#include "hi.h"
char const* greet() {
return "hi world";

}

> Step 1: Write glue code for extension module:

//hix.cc
#include "hi.h"
#include <boost/python.hpp>
BOOST_PYTHON_MODULE (hi) {
using namespace boost::python;
def ("greet", greet);

5@?\let

AAAA



Boost Python - example 1
» C++ code:
//hi.cc
#include "hi.h"
char const* greet() {
return "hi world";

}

» Step 1: Write glue code for extension module:
//hix.cc
#include "hi.h"
#include <boost/python.hpp>
BOOST_PYTHON _MODULE (hi) {
using namespace boost::python;
def ("greet", greet);
}

» Step 2: Compile

$ g++ -c hi.cc -fPIC
$ g++ -c hix.cc -fPIC -I/usr/include/python2.7
& By SﬁNet

AAAAAA



Boost Python - example 1
» C++ code:
//hi.cc
#include "hi.h"
char const* greet() {
return "hi world";

}

> The glue code:

//hix.cc
#include "hi.h"
#include <boost/python.hpp>
BOOST_PYTHON_MODULE (hi) {
using namespace boost::python;
def ("greet", greet);
}

» Step 3: Create a dynamically loadable library

$ g++ -0 hi.so hi.o hix.o -shared -lboost_python

Sﬁ?\let

AAAA



Boost Python - example 1

» C++ code:

char const* greet() {
return "hi world";
}

» Python code:

#usehi.py
import hi
print hi.greet()

> Step 4: Use it

$ python usehi.py
hi world

Scilet



Boost Python - example 2
» C++ code:
//tracer.h
#ifndef TRACERH
#define TRACERH
class Tracer {
public:

Tracer(float x, float y, float vx, float vy);

void timeStep(float dt);
void write();
float t;

}
#endif

Scilet

) compute ca\cul



Boost Python - example 2
» C++ code:
//tracer.h
#ifndef TRACERH
#define TRACERH
class Tracer {
public:
Tracer(float x, float y, float vx, float vy);
void timeStep(float dt);
void write();
float t;

}s
#endif

» Python code:

#usetracer.py

from tracer import Tracer

tr = Tracer(0.0,1.0,-1.0,2.0)
while tr.t < 10.0:

tr.timeStep(0.1) Sﬂ?\let

tr.write() . compute « calcul



Boost Python - example 2

» C++ code:

class Tracer {
public:

Tracer(float x, float y, float vx,

void timeStep(float dt);
void write();
float t;

}s

float vy);

5@?\let

AAAA



» c++|c3o ost Python - example 2

class Tracer {
public:
Tracer(float x, float y, float vx, float vy);
void timeStep(float dt);
void write();
float t;

}s

» Glue code:

#include "tracer.h"
#include <boost/python.hpp>
BOOST_PYTHON _MODULE(tracer) {
using namespace boost::python;
class_<Tracer>
("Tracer", init<float ,float ,float ,float
>()) .def("timeStep",&Tracer: :timeStep)
.def ("write",&Tracer: :write)
.def _readonly("t", &Tracer::t);

’ Scitet

’ compute ca\cu\



Compile and use. ..

$ g++ tracer.cc -fPIC
$ g++ tracerx.cc -fPIC -I/usr/inlude/python2.7
$ g++ -o tracer.so tracer.o tracerx.o —-shared -lboost_python
$ python
>>> from tracer import Tracer
>>> tr = Tracer(0.0, 1.0, -1.0, 2.0)
>>> while tr.t < 10.0:
tr.timeStep(0.1)
tr.write()

Scilet

) compute ca\cu\



Good as long as it works. ..

One wrapper, one .so
Need to remember -fPIC
If there's something wrong, hard to figure out where.

Some things are still hard in Boost Python, such as
passing back numpy arrays.

Still requires substantial amount of glue.

Other approaches may need less glue at first (SWIG), but
if you want anything that is not yet automated, you are
still glueing.

Scilet



Scientific software development:
What have we learned?

Scilet



Recap Part | of Scientific Computing

» Choose the tools for the jobs: C++ for performance,
python for flexibility, fast development, and visualization.

» Version control

» Modular programming
» header files/implementation files
> make

> object-oriented programming
» Defensive programming (assert)
> Unit testing

» Debugging

Scilet



	Introduction to Software Development
	Course project
	Object-Oriented Programming in Python
	Mixing C++ and Python


