
Scientific Computing (Phys 2109/Ast 3100H)
I. Scientfic Software Development

SciNet HPC Consortium

University of Toronto

Winter 2013



Part I

Introduction to Software Development



Lecture 8

Course project

Object-Oriented Programming in Python

Mixing C++ and Python



Course project: Where are we going?

I Two dimensional diffusion equation for density field ρ(r, t)

∂ρ

∂t
= D

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
.

I Tracer particle satisfies ODE

mR̈ = F− α(ρ(R))Ṙ,

where m is mass, F is force and α is viscosity.

I Ad hoc form for density dependent friction constant α:

α(ρ) = α0(1 + aρ).

I Ad hoc form for force, like a constant electric field:

F = qEx̂.



Course project: Where are we going?

I Periodic boundary conditions in all directions

r ∼ r + L(kx̂ + lŷ).

L is the length of the side of the box, k and l integer.
I Initial conditions:

ρ(r) = exp

[
−
‖r‖2

2σ2
0

]
,

R(0) = R0,

Ṙ(0) = V0.

I Values for the parameters (arbitrary) are

D = 1; m = 1; α0 = 1; a = 15; qE = 1; L = 10;

σ0 = 1; R0 = 0; V0 = 10ŷ



Classes in Python

I As in C++, Python uses classes to group together data
and code, accessing them with ’.’ operator

I We could also do this with modules. But there can be only
one instance of a module, and many instances of a class.

I Inheritance: multiple base classes, derived class can
override any methods of its base class or classes, and
method can call a base class method with the same name.

I Objects can contain arbitrary amounts and kinds of data.

I Classes partake of the dynamic nature of Python: created
at runtime, and can be modified further after creation.



Easy cases

I Collection of variables

I Source 1: apple1 and
apple2 share colour

(class variable); tricky.

I Source 2: works, but
now we have to assign
each member.

I Anything more workable
requires writing a
constructor.

Source 1
class Apple:

type = "Delicious"
colour = "Green"

apple1 = Apple()
apple2 = Apple()
Apple.colour = "Golden"
print apple1.colour
[Golden]

Source 2
class Apple:

pass

apple1 = Apple()
apple1.type = "Delicious"
apple1.colour = "Green"
apple2 = Apple()
apple2.type = "Delicious"
apple2.colour = "Golden"
print apple1.colour
[Green]



Easy cases

I Collection of variables

I Source 1: apple1 and
apple2 share colour

(class variable); tricky.

I Source 2: works, but
now we have to assign
each member.

I Anything more workable
requires writing a
constructor.

Source 1
class Apple:

type = "Delicious"
colour = "Green"

apple1 = Apple()
apple2 = Apple()
Apple.colour = "Golden"
print apple1.colour
[Golden]

Source 2
class Apple:

pass

apple1 = Apple()
apple1.type = "Delicious"
apple1.colour = "Green"
apple2 = Apple()
apple2.type = "Delicious"
apple2.colour = "Golden"
print apple1.colour
[Green]



Easy cases

I Collection of variables

I Source 1: apple1 and
apple2 share colour

(class variable); tricky.

I Source 2: works, but
now we have to assign
each member.

I Anything more workable
requires writing a
constructor.

Source 1
class Apple:

type = "Delicious"
colour = "Green"

apple1 = Apple()
apple2 = Apple()
Apple.colour = "Golden"
print apple1.colour
[Golden]

Source 2
class Apple:

pass

apple1 = Apple()
apple1.type = "Delicious"
apple1.colour = "Green"
apple2 = Apple()
apple2.type = "Delicious"
apple2.colour = "Golden"
print apple1.colour
[Green]



Easy cases

I Collection of variables

I Source 1: apple1 and
apple2 share colour

(class variable); tricky.

I Source 2: works, but
now we have to assign
each member.

I Anything more workable
requires writing a
constructor.

Source 1
class Apple:

type = "Delicious"
colour = "Green"

apple1 = Apple()
apple2 = Apple()
Apple.colour = "Golden"
print apple1.colour
[Golden]

Source 2
class Apple:

pass

apple1 = Apple()
apple1.type = "Delicious"
apple1.colour = "Green"
apple2 = Apple()
apple2.type = "Delicious"
apple2.colour = "Golden"
print apple1.colour
[Green]



Using a constructor

I Collection of variables

I Same def keyword to
define methods.

I Constructor name is
init

class Apple:
def init (self):

self.type = "Delicious"
self.colour = "Green"

apple1 = Apple()
apple2 = Apple()
print apple1.colour
[Green]



Class syntax in Python

I Methods take a first
argument that is an
instance of the class

I This argument is explicit
(self) in definition but
implicit in calls.

I In methods, refer to
member fields as
self.field.

I No separation
interface/implementation

class Apple:

def init (self):
self.type = "Delicious"
self.colour = "Green"

def describe(self):
print self.type,
print self.colour

apple1 = Apple()
apple2 = Apple()
print apple1.colour
[Green]
apple1.describe()
[Delicious Green]



More special methods

I del

A kind of destructor.

I str

Converts object to a string for output. Used by print.
Intended to be readable by users.

I repr

Returns a string representation for the object. Used by
python (e.g., if you just type the name of an object).
Intended to be understandable by developers.



Example: Tracer Particle

class Tracer:
def init (self,x0,y0,vx0,vy0):

self.t = 0.0
self.x = x0
self.y = y0
self.vx = vx0
self.vy = vy0

def timeStep(self,dt):
self.t += dt
self.x += d*self.vx
self.y += d*self.vy

def write(self):
print self.t, self.x, self.y

tr = Tracer(0.0,1.0,-1.0,2.0)
while tr.t < 10.0:

tr.timeStep(0.1);
tr.write()



Inheritance in Python

I Need to discuss this for
completeness’ sake

I Put classes to derive
from between
parenthesis.

I Two kinds of classes:
old and new style

I For multiple inheritance
and operator overloading.

I To get new style, inherit
from object class

Inheritance

class NamedTracer(Tracer):
def init (self,a,b,c,d,name):

Tracer. init (self,a,b,c,d)
self.name = name

t = NamedTracer(1.,2.,-1.,0.,"Al")

New style class

class Tracer(object):
#...



Inheritance in Python

I Need to discuss this for
completeness’ sake

I Put classes to derive
from between
parenthesis.

I Two kinds of classes:
old and new style

I For multiple inheritance
and operator overloading.

I To get new style, inherit
from object class

Inheritance

class NamedTracer(Tracer):
def init (self,a,b,c,d,name):

Tracer. init (self,a,b,c,d)
self.name = name

t = NamedTracer(1.,2.,-1.,0.,"Al")

New style class

class Tracer(object):
#...



Mixing C++ and Python



Mixing C++ and Python

I Python is versatile and quick to write in

I C++ is fast

I Let’s combine them: best of both worlds

I Ideally:

I Have a blazingly fast module in C++

I Compile it

I Import it into Python, and start playing

I Can then write test and driver code in Python

I Simple idea. Implementation is a harder. And non-unique.



Why isn’t this straightforward?

I Objects in Python very different from objects in C/C++

I The Python C-API exposes all the nitty gritty of making
Python work.

I A .o file is not a Python module.

I C++ compiler and Python have to be binary compatible.



What’s involved in getting this to work?

I Need to create a ’Python extension module’

I That module needs to load a dynamic library (if it isn’t a
dynamic library itself).

I So we need to build a dynamic library from the C++ code.

I And we create a Python extension module.

I For which we’ll have to write some wrapper code.



Many automating frameworks. . .

I Python C-API

I SWIG

I Boost.Python

I Cython

I . . .

This is getting hairy... and yet somehow this is very popular.



Boost Python

I Boost: large collection of useful c++ libraries. (so useful
that some parts have made it into the next c++ standard)

I Boost Python: framework for interfacing Python and
C++.

I C++ specific, but same issues for other interfaces.

I Should be able to translate a C++ class structure into a
python class structure.

I Boost likes the bjam automated build systems, but we can
just use g++ or make.



Boost Python - example 1

I C++ code:

//hi.h
#ifndef HIH
#define HIH
char const* greet();
#endif

//hi.cc
#include "hi.h"
char const* greet() {

return "hi world";
}

I Python code:

#usehi.py
import hi
print hi.greet()



Boost Python - example 1
I C++ code:

//hi.cc
#include "hi.h"
char const* greet() {

return "hi world";
}

I Step 1: Write glue code for extension module:

//hix.cc
#include "hi.h"
#include <boost/python.hpp>
BOOST PYTHON MODULE(hi) {

using namespace boost::python;
def("greet", greet);

}

I Step 2: Compile

$ g++ -c hi.cc -fPIC
$ g++ -c hix.cc -fPIC -I/usr/include/python2.7



Boost Python - example 1
I C++ code:

//hi.cc
#include "hi.h"
char const* greet() {

return "hi world";
}

I Step 1: Write glue code for extension module:

//hix.cc
#include "hi.h"
#include <boost/python.hpp>
BOOST PYTHON MODULE(hi) {

using namespace boost::python;
def("greet", greet);

}

I Step 2: Compile

$ g++ -c hi.cc -fPIC
$ g++ -c hix.cc -fPIC -I/usr/include/python2.7



Boost Python - example 1
I C++ code:

//hi.cc
#include "hi.h"
char const* greet() {

return "hi world";
}

I Step 1: Write glue code for extension module:

//hix.cc
#include "hi.h"
#include <boost/python.hpp>
BOOST PYTHON MODULE(hi) {

using namespace boost::python;
def("greet", greet);

}

I Step 2: Compile

$ g++ -c hi.cc -fPIC
$ g++ -c hix.cc -fPIC -I/usr/include/python2.7



Boost Python - example 1
I C++ code:

//hi.cc
#include "hi.h"
char const* greet() {

return "hi world";
}

I The glue code:

//hix.cc
#include "hi.h"
#include <boost/python.hpp>
BOOST PYTHON MODULE(hi) {

using namespace boost::python;
def("greet", greet);

}

I Step 3: Create a dynamically loadable library

$ g++ -o hi.so hi.o hix.o -shared -lboost python



Boost Python - example 1

I C++ code:

char const* greet() {
return "hi world";

}

I Python code:

#usehi.py
import hi
print hi.greet()

I Step 4: Use it

$ python usehi.py
hi world



Boost Python - example 2
I C++ code:

//tracer.h
#ifndef TRACERH
#define TRACERH
class Tracer {

public:
Tracer(float x, float y, float vx, float vy);
void timeStep(float dt);
void write();
float t;
...

};
#endif

I Python code:

#usetracer.py
from tracer import Tracer
tr = Tracer(0.0,1.0,-1.0,2.0)
while tr.t < 10.0:

tr.timeStep(0.1)
tr.write()



Boost Python - example 2
I C++ code:

//tracer.h
#ifndef TRACERH
#define TRACERH
class Tracer {

public:
Tracer(float x, float y, float vx, float vy);
void timeStep(float dt);
void write();
float t;
...

};
#endif

I Python code:

#usetracer.py
from tracer import Tracer
tr = Tracer(0.0,1.0,-1.0,2.0)
while tr.t < 10.0:

tr.timeStep(0.1)
tr.write()



Boost Python - example 2
I C++ code:

class Tracer {
public:

Tracer(float x, float y, float vx, float vy);
void timeStep(float dt);
void write();
float t;

};

I Glue code:
#include "tracer.h"
#include <boost/python.hpp>
BOOST PYTHON MODULE(tracer) {

using namespace boost::python;
class <Tracer>

("Tracer", init<float ,float ,float ,float
>()) .def("timeStep",&Tracer::timeStep)
.def("write",&Tracer::write)
.def readonly("t", &Tracer::t);

}



Boost Python - example 2
I C++ code:

class Tracer {
public:

Tracer(float x, float y, float vx, float vy);
void timeStep(float dt);
void write();
float t;

};

I Glue code:
#include "tracer.h"
#include <boost/python.hpp>
BOOST PYTHON MODULE(tracer) {

using namespace boost::python;
class <Tracer>

("Tracer", init<float ,float ,float ,float
>()) .def("timeStep",&Tracer::timeStep)
.def("write",&Tracer::write)
.def readonly("t", &Tracer::t);

}



Compile and use. . .

$ g++ tracer.cc -fPIC
$ g++ tracerx.cc -fPIC -I/usr/inlude/python2.7
$ g++ -o tracer.so tracer.o tracerx.o -shared -lboost python
$ python
>>> from tracer import Tracer
>>> tr = Tracer(0.0, 1.0, -1.0, 2.0)
>>> while tr.t < 10.0:
... tr.timeStep(0.1)
... tr.write()
...



Good as long as it works. . .

I One wrapper, one .so

I Need to remember -fPIC

I If there’s something wrong, hard to figure out where.

I Some things are still hard in Boost Python, such as
passing back numpy arrays.

I Still requires substantial amount of glue.

I Other approaches may need less glue at first (SWIG), but
if you want anything that is not yet automated, you are
still glueing.



Scientific software development:
What have we learned?



Recap Part I of Scientific Computing

I Choose the tools for the jobs: C++ for performance,
python for flexibility, fast development, and visualization.

I Version control

I Modular programming
I header files/implementation files

I make

I object-oriented programming

I Defensive programming (assert)

I Unit testing

I Debugging


	Introduction to Software Development
	Course project
	Object-Oriented Programming in Python
	Mixing C++ and Python


