
Latency, Occupancy & Streams

Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Homework 3
❖ In 2-D, both d/dx and d/dy collapse to single matrix-matrix

multiply
- dudx = u Dx -- sum over x (stride 1)
- dudy = (Dy)^t u -- sum over y (stride Nx) ≣ left-multiply by (Dy)^t

❖ NB: 3-D is different:
- dudx = u Dx -- stride 1
- dudz = (Dz)^t u -- stride Nx*Ny, as above, good
- dudy = ??? -- strides not consistent with BLAS syntax

❖ CuBLAS from CUDA 3 was slower than CPU-BLAS

2
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Homework 3: Transpose
❖ CuBLAS: No speed-difference u Dx vs. (Dy)^t u
• Striding/coalesced memory access taken care of

3

Elliott Sales de Andrade

Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

HW 3: Saturation size
❖ Many small matrix-vector multiplies
• even N=30 gives seizable fraction of peak

4

Elliott Sales de Andrade

Size ms CPU ms GPU

64x8 0.06 0.02

256x16 1.3 0.3

576x24 13 1.2

1024x32 54 6.7

Lukas Kontentis (on GT540m)

Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Latency
❖ time required to perform an operation
• ~20 cycles arithmetic
• 400-800 cycles global memory access
• cannot start dependent operation for this time
• can hide by overlapping with other operations

5
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Latency hiding (Little’s law, again)
❖ register read-after-write latency ~24 cycles

x = a + b;
z = x + d;

❖ SM will perform other operations while waiting

❖ Need 24 warps to hide 24 cycles latency,
i.e. 32*24=768 threads

❖ Or need code with independent operations:

6
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Occupancy
❖ Rule of thumb: Use as many threads as possible

❖ Occupancy: # of threads on SM / max # of threads on SM

❖ Occupancy subject to various constraints
• complete blocks assigned to SM
• If combined register usage exceeds SM limits -> fewer blocks
• If combined shared mem usage exceeds SM limits -> fewer blocks
• number of blocks limited

❖ For Fermi:
• 32768 32-bit registers/SM
• 48KB shared memory/SM
• max 48 warps/SM (48*32=1536 threads)
• max 8 blocks/SM
- blocksize<1536/8=192 can NEVER reach full occupancy

7
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Learning about memory usage I
❖ Compiler diagnostics --ptx-options=-v

8
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Learing about memory usage II
❖ Keep track of user-specified shared mem
• compiler cannot know this at compile time

• here: 2 floats/thread, i.e. 8 bytes/thread.
• Shared Mem/Max(#threads)=48K/1538=32bytes/thread -- should

always be safe

9

Dynamic
shared

memory

Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Learning about memory usage III	

❖ CUDA visual profiler / nsight
• Lectures 3/4
• CUDA_Profiler_Users_Guide.pdf
• Nsight_Eclipse_Edition_Getting_Started.pdf

10
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Occupancy calculator	

❖ developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

11

/Developer/NVIDIA/CUDA-5.0/tools/CUDA_Occupancy_Calculator.xls

Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Occupancy more suggestion than rule
❖ In practice, important to try

matmult --matsize=1024 --nblocks=$(NBLK)

12

$(NBLK) block-size sgem_shared
(msec)

cuBLAS
(msec)

512 4 896 4.4

256 16 156 4.4

128 64 36 4.4

64 256 52 4.4

32 1024 153 4.4

Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

CUDA default behavior
❖ Kernel calls go into a “pipeline”

func1<<<... >>>(...)
func2<<<...>>>(...)
func3<<<...>>>(...)

• later kernels will only execute when earlier ones complete
• only one kernel executes at a time. Data-transfers are in same

pipeline

❖ low performance, if kernels cannot fill entire GPU

❖ lost performance, because GPU idle during Memcpy

13
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Concurrency

14

Slides with black background from NVidia
StreamsAndConcurrencyWebinar.pdf

Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Synchronous

15
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Asynchronous between GPU and CPU

❖ kernel3 executes after kernel2

16
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Asynchronous kernels: Streams
❖ Each Stream is a separate execution pipeline

17
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Synchronization

18
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Fineprint: One compute engine queue

19
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Fineprint: One compute engine queue
❖ The one compute-engine queue dispatches kernels in order

❖ Once dispatched, kernels in different streams run in parallel

20
Tuesday, November 13, 12

Harald Pfeiffer GPU-minicourse Nov 2012

Homework 5: Streams

• Code two independent kernels that each use
approximately half the GPU
• execute them without, and with streams, and

observe the speed-up

21
Tuesday, November 13, 12

