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Homework 3
❖ In 2-D, both d/dx and d/dy collapse to single matrix-matrix 

multiply
- dudx = u Dx       -- sum over x (stride 1)
- dudy = (Dy)^t u  -- sum over y (stride Nx) ≣ left-multiply by (Dy)^t 

❖ NB:  3-D is different:
- dudx = u Dx       -- stride 1
- dudz = (Dz)^t u  -- stride Nx*Ny, as above, good
- dudy = ???           --  strides not consistent with BLAS syntax

❖ CuBLAS from CUDA 3 was slower than CPU-BLAS
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Homework 3: Transpose
❖ CuBLAS:  No speed-difference u Dx vs.  (Dy)^t u 
• Striding/coalesced memory access taken care of
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Elliott Sales de Andrade
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HW 3: Saturation size
❖ Many small matrix-vector multiplies
• even N=30 gives seizable fraction of peak
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Elliott Sales de Andrade

Size ms CPU ms GPU

64x8 0.06 0.02

256x16 1.3 0.3

576x24 13 1.2

1024x32 54 6.7

Lukas Kontentis (on GT540m)
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Latency
❖ time required to perform an operation
• ~20 cycles arithmetic
• 400-800 cycles global memory access
• cannot start dependent operation for this time
• can hide by overlapping with other operations
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Latency hiding (Little’s law, again)
❖ register read-after-write latency ~24 cycles

x = a + b;
z = x + d;

❖ SM will perform other operations while waiting

❖ Need 24 warps to hide 24 cycles latency, 
i.e. 32*24=768 threads

❖ Or need code with independent operations:
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Occupancy
❖ Rule of thumb:  Use as many threads as possible

❖ Occupancy: # of threads on SM / max # of threads on SM

❖ Occupancy subject to various constraints
• complete blocks assigned to SM
• If combined register usage exceeds SM limits -> fewer blocks
• If combined shared mem usage exceeds SM limits -> fewer blocks
• number of blocks limited

❖ For Fermi:
• 32768  32-bit registers/SM
• 48KB shared memory/SM
• max 48 warps/SM (48*32=1536 threads)
• max 8 blocks/SM  
- blocksize<1536/8=192 can NEVER reach full occupancy

7
Tuesday, November 13, 12



Harald Pfeiffer    GPU-minicourse Nov 2012

Learning about memory usage I
❖ Compiler diagnostics  --ptx-options=-v
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Learing about memory usage II
❖ Keep track of user-specified shared mem 
• compiler cannot know this at compile time

• here: 2 floats/thread, i.e. 8 bytes/thread.   
• Shared Mem/Max(#threads)=48K/1538=32bytes/thread -- should 

always be safe

9

Dynamic 
shared 

memory
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Learning about memory usage III	

❖ CUDA visual profiler / nsight
• Lectures 3/4
• CUDA_Profiler_Users_Guide.pdf
• Nsight_Eclipse_Edition_Getting_Started.pdf
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Occupancy calculator	

❖ developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
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/Developer/NVIDIA/CUDA-5.0/tools/CUDA_Occupancy_Calculator.xls
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Occupancy more suggestion than rule
❖ In practice, important to try

matmult --matsize=1024 --nblocks=$(NBLK)
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$(NBLK) block-size sgem_shared 
(msec)

cuBLAS 
(msec)

512 4 896 4.4

256 16 156 4.4

128 64 36 4.4

64 256 52 4.4

32 1024 153 4.4
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CUDA default behavior
❖ Kernel calls go into a “pipeline”

func1<<<... >>>(...)
func2<<<...>>>(...)
func3<<<...>>>(...)

• later kernels will only execute when earlier ones complete
• only one kernel executes at a time.  Data-transfers are in same 

pipeline

❖ low performance, if kernels cannot fill entire GPU

❖ lost performance, because GPU idle during Memcpy
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Concurrency
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Slides with black background from NVidia 
StreamsAndConcurrencyWebinar.pdf 
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Synchronous
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Asynchronous between GPU and CPU

❖ kernel3 executes after kernel2

16
Tuesday, November 13, 12



Harald Pfeiffer    GPU-minicourse Nov 2012

Asynchronous kernels:  Streams
❖ Each Stream is a separate execution pipeline

17
Tuesday, November 13, 12



Harald Pfeiffer    GPU-minicourse Nov 2012

Synchronization
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Fineprint:  One compute engine queue
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Fineprint:  One compute engine queue
❖ The one compute-engine queue dispatches kernels in order

❖ Once dispatched, kernels in different streams run in parallel
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Homework 5: Streams

• Code two independent kernels that each use 
approximately half the GPU
• execute them without, and with streams, and 

observe the speed-up
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