
GPU-minicourse 2012

Assignment 3: Spectral derivatives

1 Background: Spectral differentiation

Spectral methods expand spatially dependent data in terms of a basis-series,

u(x) =

N∑
k=0

ũkTk(x). (1)

Here, the Tk(x) are the known basis-functions. For a Fourier-series, these are sines and
cosines. For an interval with boundaries, the Tk(x) are usually Chebyshev polynomials,

Tk(x) = cos(k arccos(x)). (2)

Associated with each set of basis-functions are carefully chosen grid-points, which are
called collocation points. For Chebyshev,

xk = cos(πk/N), k = 0, . . . , N. (3)

The function values at the collocation points are denoted by ui ≡ u(xi).
You might ask: Why bother? The fundamental reason is that the accuracy increases

exponentially with the number N of basis-functions. Therefore, spectral methods tend
to be far more accurate and efficient than finite-difference methods. For the supplied
example 1D Example.cpp a mere 64 collocation points give an accuracy of 10−9, despite
the test-function being quite nasty.

Derivatives can be represented as matrix-multiplications. For instance, to compute
the x-derivative at the i-th collocation point:

∂u

∂x
(xi) =

N∑
j=0

Dijuj . (4)

The matrix Dij can be computed quite easily.
Equation (4) is a simple matrix-multiplication, which we have addressed in GPU-

class.

1.1 Dimension d ≥ 2

In higher dimensions, one generally uses a product of 1-D basis-functions, e.g.

u(x, y) =

Nx∑
k=0

Ny∑
l=0

ũklTk(x)Tl(y). (5)

Data is now represented on a 2-D grid:

u(xi, yj), i = 0, . . . , Nx, j = 0, . . . , Ny, (6)

where xi and yj are the collocation points of the 1-D Chebyshev series.

1



Now comes the fun part. Derivatives are taken by matrix-multiplication over one of
the two indices:

∂u

∂x
(xi, yj) =

Nx∑
k=0

Dx
iku(xk, yj), (7)

∂u

∂y
(xi, yj) =

Ny∑
k=0

Dy
jku(xi, yk). (8)

The matrices Dx
ij and Dy

ij are both square, but have different dimension when Nx 6= Ny.
As far as numerical implementation is concerned, Eqns. (??) and (8) differ from the

1-D case above in two crucial aspects:

1. Instead of 1 matrix-multiplication, we have Ny separate multiplications by Dx in
Eq. 7, and Nx separate multiplications by Dy in Eq. (8. Thus, we have a moderate
number of moderate-sized matrix-multiplications.

2. Second, a 2-D grid is usually mapped to 1-D memory via

u(xi, yj) = u[iNy + j]. (9)

Therefore, in one of Eqs. (7), (8), the matrix-multiplication will act on contiguous
memory location, whereas in the other, it will act on strided memory.

2 Homework assignments

1. In class, I described BLAS’s matrix-multiply, and gave two year old benchmark
numbers.

(a) Code BLAS matrix multiply on CPU and with CUDA in double precision
(hint: BLAS dgemm).

(b) On the ARC cluster, collect benchmark information. Sample matrix-sizes N
which are powers of 2, and which are not powers of 2.

(c) Make simple estimates of the number of FLOPS performed, and of the amount
of data moved between GPU-RAM and GPU-cores. Compute percentage of
peak FLOPS and peak memory bandwidth.

2. The supplied programs 1D Example.cpp and 2D Example.cpp implement spectral
derivatives in 1-D and 2-D, respectively.

(a) Implement the 2-D matrix multiply, Eqs. (7) and (8) on GPUs, by modifying
2D Example.cpp appropriately. (hint: BLAS dgemm). It suffices to port only
the matrix-multiply, and not the surrounding operations.

(b) Consider the case Nx = Ny ≡ N . Repeat (1b) and (1c) for various problem
sizes N . Perform timings separately for Eq. (7) and (8). Do the timings differ?
What is the reason?

(c) Because spectral methods are so accurate, real-world applications use fairly
low N , N ∼ 30. This limits the amount of parallelization opportunities. How-
ever, the real world is 3-dimensional. For the x-derivatives one has then NyNz

independent matrix multiplies by Dx
ij . This means, parallelization opportuni-

ties are increased by a factor Nz.
To mimik 3-D spectral transforms, use your 2-D code, but set Nx = N ,
Ny = N2, as well as Nx = N2, Ny = N . Repeat (1b) and (1c) for various
problem sizes N .

2


