GPU-minicourse 2012

Assignment 3: Spectral derivatives

1 Background: Spectral differentiation

Spectral methods expand spatially dependent data in terms of a basis-series,

N
u(a) =Y ixTi(x). (1)
k=0

Here, the Ty (z) are the known basis-functions. For a Fourier-series, these are sines and
cosines. For an interval with boundaries, the Ty (z) are usually Chebyshev polynomials,

Tk (x) = cos(k arccos(x)). (2)

Associated with each set of basis-functions are carefully chosen grid-points, which are
called collocation points. For Chebyshev,

xy, = cos(mk/N), k=0,...,N. (3)

The function values at the collocation points are denoted by u; = u(z;).

You might ask: Why bother? The fundamental reason is that the accuracy increases
exponentially with the number N of basis-functions. Therefore, spectral methods tend
to be far more accurate and efficient than finite-difference methods. For the supplied
example 1D_Example.cpp a mere 64 collocation points give an accuracy of 1072, despite
the test-function being quite nasty.

Derivatives can be represented as matrix-multiplications. For instance, to compute
the x-derivative at the i-th collocation point:

ou N
5y (%) = > Diju;. (4)
=0

The matrix D;; can be computed quite easily.
Equation (4) is a simple matrix-multiplication, which we have addressed in GPU-
class.

1.1 Dimension d > 2

In higher dimensions, one generally uses a product of 1-D basis-functions, e.g.

2
2

T Y

u(r,y) = g T (2) 1 (y). (5)

=
I
=)
Il
=)

Data is now represented on a 2-D grid:
u(xi,yj), i:07"'7Nxv jZO,...,Ny, (6)

where z; and y; are the collocation points of the 1-D Chebyshev series.



Now comes the fun part. Derivatives are taken by matrix-multiplication over one of
the two indices:

N,
ou z
5p T Ys) = > Dl ys), (7)
k=0
p) all
u
k=0

The matrices Dj; and Dg’j are both square, but have different dimension when N, # N,,.
As far as numerical implementation is concerned, Eqns. (??) and (8) differ from the
1-D case above in two crucial aspects:

1. Instead of 1 matrix-multiplication, we have N, separate multiplications by D? in
Eq. 7, and N, separate multiplications by DY in Eq. (8. Thus, we have a moderate
number of moderate-sized matrix-multiplications.

2. Second, a 2-D grid is usually mapped to 1-D memory via
u(wi,y;) = uli Ny + j]. (9)

Therefore, in one of Egs. (7), (8), the matrix-multiplication will act on contiguous
memory location, whereas in the other, it will act on strided memory.

2 Homework assignments

1. In class, I described BLAS’s matrix-multiply, and gave two year old benchmark
numbers.

(a) Code BLAS matrix multiply on CPU and with CUDA in double precision
(hint: BLAS dgemm).

(b) On the ARC cluster, collect benchmark information. Sample matrix-sizes N
which are powers of 2, and which are not powers of 2.

(¢) Make simple estimates of the number of FLOPS performed, and of the amount
of data moved between GPU-RAM and GPU-cores. Compute percentage of
peak FLOPS and peak memory bandwidth.

2. The supplied programs 1D_Example.cpp and 2D_Example.cpp implement spectral
derivatives in 1-D and 2-D, respectively.

(a) Implement the 2-D matrix multiply, Egs. (7) and (8) on GPUs, by modifying
2D_Example.cpp appropriately. (hint: BLAS dgemm). It suffices to port only
the matrix-multiply, and not the surrounding operations.

(b) Consider the case N = N, = N. Repeat (1b) and (1c) for various problem
sizes N. Perform timings separately for Eq. (7) and (8). Do the timings differ?
What is the reason?

(¢) Because spectral methods are so accurate, real-world applications use fairly
low N, N ~ 30. This limits the amount of parallelization opportunities. How-
ever, the real world is 3-dimensional. For the x-derivatives one has then Ny N,
independent matrix multiplies by D7;. This means, parallelization opportuni-
ties are increased by a factor IV,.

To mimik 3-D spectral transforms, use your 2-D code, but set N, = N,
N, = N? as well as N, = N?, N, = N. Repeat (1b) and (1c) for various
problem sizes N.



