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Overview

e Introduction to GPU programming

 Introduction to CUDA

 CUDA example programs

 CUDA libraries

 OpenACC

 CUDA extensionsto the C programming language

e Beyond the basics - initial discussion on optimizing
CUDA




Oak Ridge National Labs - operational in October 2012
18,688 Opteron 16-core CPUs

18,688 NVIDIA Tesla K20 GPUs

17.6 peta FLOPS

Fell to #2 on Nov. 2013 list, beat by Intel Phi system
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GPU computing timeline

GFLOPS
before 2003 - Calculations on GPU, using graphics AP ) [ G0
2003 - Brook “C with streams” 3007 | o ooveeriton
2005 - Steady increase in CPU clock speed comes to
a halt, switch to multicore chips to compensate. At the

same time, computational power of GPUs increases .mf} —— A
November, 2006 - CUDA released by NVIDIA v — ___ I Coghine
November, 2006 - CTM (Closeto Metal) from AT O e s Ace May Nov Ve Nov

December 2007 - Succeeded by AMD Stream SDK 2003 2004 2005 2006
December, 2008 - Technical specification for OpenCL 1.0 releasea

April, 2009 - First OpenCL 1.0 GPU driversreleased by NVIDIA

August, 2009 - Mac OS X 10.6 Snow Leopard released, with OpenCL 1.0 included
September 2009 - Public release of OpenCL by NVIDIA

December 2009 - AMD release of ATI Stream SDK 2.0 with OpenCL support
March 2010 - CUDA 3.0 released, incorporating OpenCL

May 2011 - CUDA 4.0 released, better multi-GPU support

mid-2012 - CUDA 5.0

late-2012 - NVIDIA K20 Kepler cards

Future - CPUs will have so many cores they will start to be treated as GPUS?
Accelerators become universal?



Introduction to GPU programming

A graphics processing unit (GPU) Is
a processor whose main job isto
accelerate the rendering of 3D
graphics primitives. Performance
gains were mostly high performance
computer gaming market

e GPU makers have realized that with relatively little additional
silicon a GPU can be made into a general purpose computer.
They have added this functionality to increase the appeal of
cards.

e Even computer games now increasingly take advantage of
general compute for game physics ssimulation
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A brief tour of graphics programming

« 2D textures are wrapped around 3D
meshes to assign colour to individual
pixels on screen

« Lighting and shadow are applied to
bring out 3D features

« Shaders allow programmers to define
custom shadow and lighting
techniques

— can also combine multiple texturesin
interesting ways

« Resulting pixels get sent to aframe
buffer for display on the monitor




Introduction to GPGPU (cont.)

« Thiswas cool for awhile, but because all computations
occurred within the graphics pipeline, there were limitations:

— limited inputs/outputs

— limited data types, graphics-specific semantics

— memory and processor optimized for short vectors, 2D textures
— lack of communication or synchronization between “threads’

— no writes to random memory locations (scatter)

— no in-out textures (had to ping-pong in multi-pass algorithms)
— graphics APl overhead

— graphicsAPI learning curve
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General computing APIsfor GPUs
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NVIDIA offers CUDA while AMD has moved toward OpenCL (also
supported by NVIDIA)

These computing platforms bypass the graphics pipeline and expose the raw
computational capabilities of the hardware. Programmer needs to know
nothing about graphics programming.

OpenACC compiler directive approach is emerging as an alternative (works
somewhat like OpenMP)

More recent and less developed alternative to CUDA: OpenCL
— avendor-agnostic computing platform
— supports vendor-specific extensions akin to OpenGL

— goal isto support arange of hardware architectures including GPUs, CPUs, Cell
processors, Larrabee and DSPs using a standard low-level API



Mini quiz

Main advantage of OpenCL over CUDA s that:

* A: OpenCL offers higher performance than CUDA

e B: OpenCL has more up to date features because it is an
open standard

e C: OpenCL programswill run on non-NVIDIA devices
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The appeal of GPGPU

e “Supercomputing for the masses’
— gsignificant computational horsepower at an attractive price point
— readily accessible hardware

e Scalability
— programs can execute without modification on a run-of-the-mil|

PC with a $150 graphics card or a dedicated multi-card
supercomputer worth thousands of dollars

« Bright future — the computational capability of GPUs
doubles each year

— more thread processors, faster clocks, faster DRAM, ...
— “GPUs are getting faster, faster”



« CPU
— “Jack of all trades’
— task parallelism (diverse tasks)
— minimize latency
— multithreaded
— some SIMD

e GPU
— excel at number crunching

— dataparalelism (single task)

— maximize throughput

— super-threaded

— large-scale SIMD
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Comparing GPUs and CPUs

B

! { } !
|
I { } ! | bt
! ! ' |
i ! ] ! i
} ! § -
i |
! ’ |
| ! |
|
§--d i i ! \
| | |
ot 4 ! |-
! ! |
i d i b
!
! . ) ]
|
i i \
| - ! i | H
| | ' |

GPU




Stream computing

e A parallel processing model where a computational kernel
IS applied to a set of data (a stream)

— the kernel is applied to stream elements in parallel

Inputstream | 51|38 |2|3|6|7|7|3]|4]|5

e et ||| L

Outputstream |6 |2 |(4|19|3|4|7|8|8|4|5|6

* GPUsexcdl at this thanks to alarge number of processing
units and a parallel architecture
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Beyond stream computing

Current GPUs offer functionality that goes beyond
mere stream computing

Shared memory and thread synchronization primitives
eliminate the need for data independence

Gather and scatter operations allow kernelsto read
and write data at arbitrary locations



« “Compute Unified Device Architecture

» A platform that exposes NVIDIA GPUs as
general purpose compute devices

 |sCUDA considered GPGPU?

— yesand no

« CUDA can execute on devices with no graphics
output capabilities (the NVIDIA Tedla product line)
—these are not “GPUS’, per se

» however, if you are using CUDA to run some
generic algorithms on your graphics card, you are
Indeed performing some General Purpose
computation on your Graphics Processing Unit...
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What 1s CUDA used for?

 CUDA has been used in many different areas
— options pricing in finance
— €electromagnetic ssimulations
— fluid dynamics
- GIS
— geophysical data processing
— 3D visualization solutions

e Seehttp://ww. nvidia.conlobject/cuda honme new. htm
— long list of projects and speedups achieved



http://www.nvidia.com/object/cuda_home_new.htm

o What kind of speedup can | expect?
— Ox — 2000x reported
— 10x — considered typical (vs. multi-CPU machines)
— >= 30x considered worthwhile

o Speedup depends on
— problem structure

* need many identical independent calculations
» preferably sequential memory access

— level of intimacy with hardware
— time investment
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How to get running on the GPU?

Easiest case: the package you are using already has a GPU-
accelerated version. No programming needed.

Medium case: your program spends most of itstime in library
routines which have GPU accelerated versions. Use libraries
that take advantage of GPU acceleration. Small programming
effort required.

Hard case: You cannot take advantage of the easier two
possibilities, so you must convert some of your code to CUDA
or OpenCL

Newly available OpenACC framework is an alternative that
should make coding easier.



GPU-enabled software

« A growing number of popular scientific software packages have
now been accelerated for the GPU

» Using a GPU accelerated package requires no programming
effort for the user

o Acceleration of Molecular Dynamics software has been

particularly successful, with all maor packages offering the
GPU acceleration option



 http://www.ks.uiuc.edu/Research/namd/

« NAMD = Not (just)Another Molecular Dynamics program
* Free and open source

o Written using Charm++ parallel programming model

* Noted for its parallel efficiency


http://www.ks.uiuc.edu/Research/namd/

NAMD performance on monk

» apoal standard NAMD benchmark, 92224 atoms simulated for

o A~ N P

500 time steps, wall time in seconds:

867.3
440.5
223

113.7

76.9
45.7
40.4
39.3

76.6
43.2
28.6
23.7




NAMD performance on monk

» apoal standard NAMD benchmark, 92224 atoms simulated for
500 time steps, speedup over 1 thread/no GPU:

1 1 11.3 11.3
2 2 19 20.1
4 3.9 21.5 30.3
8 1.7 22.1 36.6

e Speedup over 8-core/no GPU: 2.9 with 1 GPU, 4.8 with 2
 Most efficient: 2 runs of 4 core/1 GPU, speedup 2*21.5=43.0



NAMD performance on monk

* Dbpti6 standard NAMD demo, 1101 atoms simulated for 21,000

time steps, wall time in seconds:

1 202.6 48.9
2 107.4 33.8
4 56.2 31.7
8 30.8 34.6

* For smaller system GPU acceleration is less useful.
« Performance depends on system size!

48.7
31.7
28.4
29.1




NAMD performance on monk

* Dbpti6 standard NAMD demo, 1101 atoms simulated for 21,000
time steps, speedup over 1 thread/no GPU:

1 1 4.1 4.2
2 1.9 6 6.4
4 3.6 6.4 7.1
8 6.6 5.9 7
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TeslaM2070 ($1000+) vs GTX 570 ($300)
» apoal standard NAMD benchmark, 92224 atoms simulated for

500 time steps, wall time in seconds:

o ~ N BB

867.3
440.5
223

113.7

76.9
45.7
40.4
39.3

73.2
38.4
33.3
32.8
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CUDA programming model

e Theman CPU isreferred to as the host

« The compute device is viewed as a coprocessor capable of
executing alarge number of lightweight threads in parallel

« Computation on the device is performed by kernels, functions
executed in parallel on each data element

« Both the host and the device have their own memory

— the host and device cannot directly access each other’s memory, but
data can be transferred using the runtime AP

e Thehost manaﬂes_ all memory allocations on the device, data
transfers, and the invocation of kernels on the device
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GPU applications

e The GPU can be utilized in different capacities

* Oneisto usethe GPU as amassively parallel coprocessor
for number crunching applications

— upload data and kernel to GPU

— execute kernel

— download results

— CPU and GPU can execute asynchronously

e Some applications use the GPU for both data crunching
and visualization

— CUDA has bindings for OpenGL and Direct3D



GPU as coprocessor

Kernel execution is
asynchronous

Asynchronous memory
transfers also available

o Basic paradigm
— host uploads inputsto device

— host remains busy while device performs computation
» prepare next batch of data, process previous results, etc.

— host downloads results
« Can beiterative or multi-stage

Summer School 2015 Pawel Pomorski
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Simulation + visualization

- -

e Basic paradigm
— host uploads inputs to device

— host may remain busy while device performs computation
» prepare next batch of data, etc.

— results used on device for rendering, no download to host
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Fluids Demo

N-Body Demo
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SHARCNET GPU systems

e Always check our software page for latest info! See also:
https.//www.sharcnet.ca/hel p/index.php/GPU_Accelerated Computing

e angel.sharcnet.ca

11 NVIDIA Tesla S1070 GPU servers
each with 4 GPUs + 16GB of global memory
each GPU server connected to two compute nodes (2 4-core Xeon CPUs + 8GB RAM each)

1 GPU per quad-core CPU; 1:1 memory ratio between GPUS/CPUs

e visualization workstations
Some old and don’'t support CUDA, but some have up to date cards, check list at:
https.//www.sharcnet.ca/my/systems/index



2012 arriva - “monk” cluster

54 nodes, InfiniBand interconnect, 80 Tb storage

Node:
8 x CPU cores (Intel Xeon 2.26 GHz)
48 GB memory

2 x M2070 GPU cards

NvidiaTeslaM2070 GPU
“Fermi” architecture
ECC memory protection
L1 and L2 caches

2.0 Compute Capability
448 CUDA cores

515 Gigaflops (DP)




CUDA versionsinstalled

e Different versions of CUDA available - choose one via modules

— onmonk latest CUDA installed in/ opt / shar cnet / cuda/ 5. 0. 35/

— sample projectsin/ opt / shar cnet/ cuda/ 5. 0. 35/ sanpl es

e copy to your work space (e.g. / wor k/ user nane/ cuda_sdk) & compile following instructions on the
software page

https://www.sharcnet.calhel p/index.php/ CUDA

Development node: mon54 for interactive use, plus viz stations


https://www.sharcnet.ca/my/software/show/85

Output of device diagnostic program

[ppomorsk@mon54:~/CUDA_dayl/device_diagnostic] ./device_diagnostic.x

found 2 CUDA devices
——— General Information for device @ ———
Name: Tesla M2070
Compute capability: 2.0
Clock rate: 1147000
Device copy overlap: Enabled
Kernel execution timeout : Disabled
——— Memory Information for device @ ——-
Total global mem: 5636554752
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
——— MP Information for device 0 ——-
Multiprocessor count: 14
Shared mem per mp: 49152
Registers per mp: 32768
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (65535, 65535, 65535)

——— General Information for device 1 —
Name: Tesla M2070




Mini quiz:

What is the warp size on current generation CUDA
devices?

Summer School 2015 Pawel Pomorski
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Submitting GPU jobs

o See GPU Accelerated Computing article on training wiki for
maximum detai

— note: queue details (mpi vs. gpu — test queue oddities)

— To submit ajob to gpu queue on angel
sgsub —g gpu --gpp=1 —n 1 —o0 out.txt —-r 5m ./ a. out
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Thread batching

» To take advantage of the multiple multiprocessors,
kernels are executed as a grid of threaded blocks

« All threadsin athread block are executed by asingle
multiprocessor

* Theresources of a multiprocessor are divided among
the threads in a block (registers, shared memory, etc.)

— this has several important implications that will be discussed
|ater
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Hardware basics

A NE T A,

* The compute device is composed of a number of
multiprocessors, each of which contains a number of
SIMD processors

— Tesdla M 2070 has 14 multiprocessors (each with 32 CUDA cores)

* A multiprocessor can execute K threads in parall€el
physically, where K is called the warp size

— thread = instance of kernel
— warp size on current hardware is 32 threads

 Each multiprocessor contains a large number of 32-bit
registers which are divided among the active threads



AS HARCNET"®
GPU Hardware architecture - NVIDIA Fermi
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Thread batching: 1D example

Grid

Block Block Block Bleck Block Block Block Block
0 1 2 3 4 5 6 7

Block 4

Summer School 2015 Pawel Pomorski
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Block Block Block

(0,0) (1,0 (2,0)
BIoclg,x Block = Block
(0.1) (L) (21

Block (1, 1)
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Thread batching (cont.)
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>

e At runtime, athread can determine the block that it

belongs to, the block dimensions, and the thread index
within the block

e These values can be used to compute indices into
Input and output arrays



Introduction to GPU Programming: CUDA

HELLO, CUDA!
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L anguage and compiler

CUDA provides a set of extensions to the C programming
language
— hew storage quantifiers, kernel invocation syntax, intrinsics, vector
types, €etc.

e CUDA sourcecodesavedin. cu files

— host and device code and coexist in the same file
— storage qualifiers determine type of code

« Compiled to object filesusing nvcc compiler
— object files contain executable host and device code

« Can be linked with object files generated by other C/C++
compilers



o« SAXPY (Scaar Alpha X PlusY) isacommon linear
algebra operation. It isacombination of scalar
multiplication and vector addition:

y=a-x+y

— xandy arevectors, a iIsascalar
— x andy can be arbitrarily large
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SAXPY: CPU version

e HereisSAXPY invanillaC:

void saxpy_cpu(float xvecY, float xvecX, float alpha, int n)
int i;

for (i = 0; 1 < n; i++)
vecY[i] = alpha *x vecX[i] + vecYI[il;

— the CPU processes vector components sequentially using a
for loop

— notethat vecY Isan in-out parameter here

Summer School 2015 Pawel Pomorski
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SAXPY: CUDA version

o CUDA kernel function implementing SAXPY

_global__ void saxpy_gpu(float *xvecY, float *xvecX, float alpha ,int n)
{

int i;

i = blockIdx.x * blockDim.x + threadIdx.x;
if (i<n)
vecY[i] = alpha * vecX[i] + vecY[il;

« The gl obal  qudifier identifiesthisfunction as akernel
that executes on the device

Summer School 2015 Pawel Pomorski



SAXPY: CUDA version (cont.)

__global__ void saxpy_gpu(float xvecY, float xvecX, float alpha ,int n)
{

int 1i;

i = blockIdx.x * blockDim.x + threadIdx.x;
if (i<n)
vecY[i] = alpha * vecX[i] + vecYI[il;

e —

e bl ockldx, blockD mandt hreadl dx arebuilt-in

variables that uniquely identify athread's position in the
execution environment

— they are used to compute an offset into the data array

Summer School 2015 Pawel Pomorski
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SAXPY: CUDA version (cont.)

_global__ void saxpy_gpu(float *xvecY, float *xvecX, float alpha ,int n)
{

int 1i;

i = blockIdx.x * blockDim.x + threadIdx.x;
if (i<n)
vecY[i] = alpha * vecX[i] + vecY[il;

e — e E——

e The host specifiesthe number of blocks and block size during
kernel invocation:

saxpy_gpu<<<nunBl ocks, bl ockSize>>>(y _d, x_d, al pha, n);

Summer School 2015 Pawel Pomorsk
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Computing the index

i = blockIdx.x * blockDim.x + threadIdx.Xx;
if (i<n)

vecY[i] = alpha * vecX[i] + vecY[il;
R — B
Block O Block 1 Block 2 Block 3 Block 4

A A A A A
r ~ = v

(=4 S I I T
vecY HUODOOOOOOO0O00 00000000000 MmO 000 0000000000 -

A =3*8+5=29

bl ockl dx. x
bl ockDi m x
threadl dx.x = 5

3
8
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Key differences

void saxpy_cpu(float xvecY, float xvecX, float alpha, int n)
int 1i;

for (1 = 0; 1 < n; i++)
vecY[i] = alpha *x vecX[i] + vecY[il;

e —— E——

_global__ void saxpy_gpu(float xvecY, float xvecX, float alpha ,int n)
{

int 1i;

i = blockIdx.x x blockDim.x + threadIdx.x;
if (i<n)
vecY[i] = alpha * vecX[i] + vecYI[il];

» No need to explicitly loop over array elements — each element is processed in a separate
thread

 Theeement index is computed based on block index, block width and thread index within
the block

Summer School 2015 Pawel Pomorsk
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Key differences

__global__ void saxpy_gpu(float xvecY, float xvecX, float alpha ,int n)

{
int i;
i = blockIdx.x * blockDim.x + threadIdx.x;
if (i<n)
vecY[i] = alpha * vecX[i] + vecY[i];
}

 ————

e Could avoid testing whether i < nif we knew nisamultiple of block size (e.g. use
padded arrays --- recall MPI_Scatter issues)

_global__ void saxpy_gpu(float xvecY, float xvecX, float alpha ,int n)

{
int i;
1 = blockIdx.x * blockDim.x + threadIdx.x;
vecY[i] = alpha * vecX[i] + vecYI[i];

}

Summer School 2015 Pawel Pomorsk



* The host performs the following operations.
1. initialize device

allocate and initialize input arrays in host DRAM

allocate memory on device

upload input data to device

execute kernel on device

download results

check results

clean-up

© N Ok WD



Host code: 1nitialization

#include <cuda.h> /* CUDA runtime API x/
#include <cstdio>

int main(int argc, char xargvl[])

{
float *x_host, *xy_host; /* arrays for computation on hostx/
float *x_dev, *xy_dev; /* arrays for computation on device x/
float *xy_shadow; /* host-side copy of device results x/

int n = 32x1024;
float alpha = 0.5f;
int nerror;

size_t memsize;
int i, blockSize, nBlocks;

/* here could add some code to check if GPU device is present *x/

Summer School 2015 Pawel Pomorsk




Host code: memory allocation

memsize = n * sizeof(float);

/* allocate arrays on host *x/

Xx_host = (float *)malloc(memsize);
y_host = (float *)malloc(memsize);
y_shadow = (float x)malloc(memsize);

/* allocate arrays on device x/

cudaMalloc((void **) &x_dev, memsize);
cudaMalloc((void k) &y_dev, memsize);

/* add checks to catch any errors x/
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Host code: upload data

/* initialize arrays on host x/

for ( 1 =0; 1 < n; 1i++)

{

rand() / (float)RAND_MAX;
rand() / (float)RAND_MAX;

x_host[i]
y_host[i]
}

/* copy arrays to device memory (synchronous) x/

cudaMemcpy (x_dev, x_host, memsize, cudaMemcpyHostToDevice);
cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);
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Host code: kernel execution

/* set up device execution configuration */
blockSize = 512;
nBlocks = n / blockSize + (n % blockSize > 0);
/* execute kernel (asynchronous!) x/
saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);

/* could add check if this succeeded x/

/* execute host version (i.e. baseline reference results) *x/
saxpy_cpu(y_host, x_host, alpha, n);
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Host code: download results

/* retrieve results from device (synchronous) x/
cudaMemcpy(y_shadow, y_dev, memsize, cudaMemcpyDeviceToHost);

/* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) */

cudaDeviceSynchronize();

/*x check results x/

nerror=0;
for(i=0; i < n; i++)
{

if(y_shadow[i] !=y_host[i]) nerror=nerror+l;
}

printf("test comparison shows %d errors\n",nerror);
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Host code: clean-up

/* free memory on devicex/
cudaFree(x_dev);
cudaFree(y_dev);

/*x free memory on host x/
free(x_host);
free(y_host);
free(y_shadow);

return 0;
} /% main x/

Summer School 2015
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Checking for errorsin CUDA calls

/* check CUDA API function call for possible error */
if (error = cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice))
{
printf ("Error %d\n", error);
exit (error);

by

saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);
/* make sure kernel has completed*/

cudaDeviceSynchronize();
/* check for any error generated by kernel callx/

if(error = cudaGetLastError())

{

printf ("Error detected after kernel %d\n", error);
exit (error);

}
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Compiling

e nvcc -arch=sm_20 -O2 program.cu -0 program.x

e -arch=sm_ 20 means code is targeted at Compute
Capability 2.0 architecture (what monk has)

e -O2 optimizes the CPU portion of the program
e There are no flags to optimize CUDA code
 Various fine tuning switches possible

« SHARCNET has a CUDA environment module prel oaded.
See what It does by executing: module show cuda

e add -lcublasto link with CUBLAS libraries



Mini quiz

What does the Compute Capability number mean?

* A:NVIDIA specification for what level of precision a GPU
card can support

 B:NVIDIA measure of the computational power of a GPU

 C:NVIDIA specification for describing the set of
programming features supported by a GPU card
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Be aware of memory bandwidth bottlenecks

48 GB 6 GB
SDRAM GDDR
~20 GB/s 1 I ~100 GB/s
CPU < > GPU
~150GF[" ., |~05TF
~6 GB/s

* The connection between CPU and GPU has low bandwidth
— heed to minimize data transfers

— Important to use asynchronous transfers if possible (overlap
computation and transfer)

— good ideato test bandwidth (with tool from SDK)



Mini quiz

What is the most significant bottleneck to worry
about 1n typical CUDA programs?

« A: memory bandwidth from GPU to its memory
e B: memory bandwidth from CPU to its memory
e C: memory bandwidth between GPU and CPU memory




Using pinned memory

« Thetransfer between host and device isvery slow compared to
access to memory within either the CPU or the GPU

* One possibility to speed it up relatively easily isto use pinned
memory on the host for memory allocation of array that will be
transferred to the GPU

* remember to free this memory correctly

cudaMallocHost((void **) &a_host, memsize_input)

cudaFree(a_host);




Mini quiz

What is one useful improvement for speeding up
transfers between CPU and GPU memory in a
CUDA program?

e A: alocate GPU memory as pinned
« B: alocate host memory as pinned
e C: use shared memory in your transfer
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cudaMallocHost

o will allocate CPU memory in a special way which makes it
easier for GPU to access

 If both arrays created with cudaMalloc call, can use

cudaMemcpyDefault keyword in cudaMemcpy, CUDA will
figure out where the datais actually located

cudaMallocHost((void *x) &x_host, memsize_input)
cudaMalloc((void **) &x_dev, memsize);
cudaMemcpy (x_dev, x_host, memsize, cudaMemcpyDefault);

cudaFree(a_host);




presents CPU and GPU memory as a single space

this does not actually remove the penalty for accessing CPU
memory from GPU, and the programmer must be aware of this

capability evolves, you have to check which generation of card
you have to see if these features are supported

If your Compute Capability is 2.0 or above, the kernel can
access data all ocated with cudaMall ocHost

sometimes using CPU data in kernel makes the code faster, due
to automatic overlapping of computation and memory transfer
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Timing GPU accelerated codes

* Presents specific difficulties because the CPU and GPU
can be computing independently in paralldl, i.e.
asynchronously

* On the cpu can use standard function gettimeofday(...)
(microsecond precision) and process the result

 |f trying to time events on GPU with this function, must
ensure synchronization

e This can be done with acall to cudaDeviceSynchronize()

 Memory copies to/from device are synchronized, so can be
used for timing.

 Timing GPU kernels on the CPU may be insufficiently
accurate
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Using mechanisms on the GPU for timing

e Thisishighly accurate on the GPU side, and very useful
for optimizing kernels

cudaEvent_t start, stop;
float kernel_timer;

cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);

saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);

cudaEventRecord(stop, 0);
cudaEventSynchronize( stop );
cudaEventElapsedTime( &kernel_timer, start, stop );

printf("Test Kernel took %f ms\n",kernel_timer);
cudaEventDestroy(start);
cudaEventDestroy(stop);




Thereis overhead to “spinning up” a GPU.

The very first function call which involves the device may
be quite slow as it incorporates the initialization of the
GPU.

Thefirst memory transfer to deviceislikely to be slower
than subsequent ones. Thefirst kernel execution will
likely be slower. Thiswill be especially significant if you
are trying to time events of short duration.

A good strategy i1sto have a“warmup” run: execute your
kernel afew times and only then start timing

To get really good timing, running your kernels repeatedly
and obtaining average runtime is essential
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Profiling CUDA - nvprof

* Fortunately, thereisagood profiler that comes with
CUDA

It will work on any compiled CUDA executable

* nvcctest.cu -o test.x
nvprof ./test.x

|t will only time functions involving the GPU, so if you
want to compare GPU with CPU performance, you must
time the CPU functions yourself
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Linear algebra on the GPU

Linear algebraon the CPU: BLAS, LAPACK
GPU analogues: CUBLAS, CULA
CUSPARSE library for sparse matrices

Use of highly optimised libraries is always better than writing
your own code, especialy since GPU codes cannot yet be
efficiently optimized by compilers to achieve acceptable
performance

Writing efficient GPU code requires special care and
understanding the peculiarities of underlying hardware
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CUBLAS

Implementation of BLAS (Basic Linear Algebra Subprograms)
on top of CUDA

Included with CUDA (hence free)

Workflow:

1. allocate vectors and matrices in GPU memory
2. fill them with data

3. call sequence of CUBLAS functions

4. transfer results from GPU memory to host

Helper functionsto transfer data to/from GPU provided



Error checks

In following example most error checks were removed for
clarity

each CUBLAS function returns a status object containing
Information about possible errors

It’s very important these objects to catch errors, viacallslike
this:

If (status!= CUBLAS STATUS SUCCESS) {
print diagnostic information and exit}



Initialize program

#include <cuda.h> /x CUDA runtime API x/
#include <cstdio>
#include <cublas_v2.h>

int main(int argc, char xargvl[])

{
float *x_host, *y_host; /x arrays for computation on hostx/
float *x_dev, *xy_dev; /* arrays for computation on device x/

int n = 32%1024;
float alpha = 0.5f;
int nerror;

size_t memsize;
int i;

/* could add device detection here x/

memsize = n * sizeof(float);
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Allocate memory on host and device

/* allocate arrays on host *x/

(float x)malloc(memsize);
(float *)malloc(memsize);

x_host
y_host

/* allocate arrays on device x/

cudaMalloc((void *x) &x_dev, memsize);
cudaMalloc((void *x) &y_dev, memsize);

/* initialize arrays on host */

for (1 =0; 1< n; i++)
{

rand()
rand()

(float)RAND_MAX;
(float)RAND_MAX;

x_host[i]
y_host[i]

~N NN

}
/* copy arrays to device memory (synchronous) x/

cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice);
cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);
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Cal CUBLAS function

cublasHandle_t handle;
cublasStatus_t status;

status = cublasCreate(&handle);

int stride = 1;
status = cublasSaxpy(handle,n,&alpha,x_dev,stride,y_dev,stride);

/* check if cublasSaxpy launched succesfully */

if (status != CUBLAS_STATUS_SUCCESS)
{
printf ("Error in launching CUBLAS routine \n");

exit (20);
}

status = cublasDestroy(handle);
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Retrieve computed data and finish

/* retrieve results from device (synchronous) x/
cudaMemcpy(y_host, y_dev, memsize, cudaMemcpyDeviceToHost);

/* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) x/
cudaDeviceSynchronize();

/* use data in y_hostx/

/* free memory */

cudaFree(x_dev);

cudaFree(y_dev);

free(x_host);

free(y_host);

return 0;
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New standard for parallel computing developed by compiler
makers. See: http://www.openacc-standard.org/

Specified in late 2011, released in 2012
SHARCNET has the PGl compiler on monk which supports it
OpenACC works somewhat like OpenMP

Goal isto provide ssmple directives to the compiler which enable
It to accelerate the application on the GPU

Thetool isaimed at developers aiming to quickly speed up their
code without extensive recoding in CUDA

Astool isvery new and this course focuses on CUDA, only abrief
demo of OpenACC follows



http://www.openacc-standard.org/

SAXPY with OpenACC

#include <openacc.h>
void saxpy_openacc(float xrestrict vecY, float xvecX, float alpha, int n)

int 1i;
#pragma acc kernels
for (i = 0; i < n; i++)
vecY[i] = alpha * vecX[i] + vecYI[il;

}

/* execute openacc accelerated function on GPU *x/
saxpy_openacc(y_shadow, x_host, alpha, n);

e OpenACC automatically builds a kernel function that will run
on GPU

 Memory transfers between device and host handled by
OpenA CC and need not be explicit



Compiling SAXPY with OpenACC

[ppomorsk@mon54:~] module unload intel
[ppomorsk@mon54:~] module load pgi
[ppomorsk@mon54:~/CUDA_dayl/saxpyl pgcc —acc -Minfo=accel -fast saxpy_openacc.c
saxpy_openacc:
25, Generating copyin(vecX[0:n])
Generating copy(vecY[0:n])
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary
26, Loop is parallelizable
Accelerator kernel generated
26, #pragma acc loop gang, vector(256) /x blockIdx.x threadIdx.x x/
CC 1.0 : 4 registers; 52 shared, 4 constant, @ local memory bytes
CC 2.0 : 8 registers; 4 shared, 64 constant, @ local memory bytes
[ppomorsk@mon54:~/CUDA_dayl/saxpy] export ACC_NOTIFY=1
[ppomorsk@mon54:~/CUDA_dayl/saxpyl export PGI_ACC_TIME=1
[ppomorsk@mon54:~/CUDA_dayl/saxpyl ./a.out
launch kernel file=/home/ppomorsk/CUDA_dayl/saxpy/saxpy_openacc.c function=saxpy_openacc
line=26 device=0 grid=128 block=256 queue=0

Accelerator Kernel Timing data
/home/ppomorsk/CUDA_dayl/saxpy/saxpy_openacc.c
saxpy_openacc
25: region entered 1 time
time(us): total=4241617 init=4240714 region=903
kernels=22 data=461
w/0 init: total=903 max=903 min=903 avg=903
26: kernel launched 1 times
grid: [128] block: [256]
time(us): total=22 max=22 min=22 avg=22

- N
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|s OpenACC always this easy?

No, the loop we accelerated was particularly easy for the compiler
to interpret. It was very simple, and each iteration was completely
Independent of the others

If the accelerate directive is placed before a more complicated
loop, the compiler refuse to accelerate the region, complaining of
errors

More specific compiler directives must hence be provided for
more complicated functions

Memory transfers must be handled explicitly if we don’'t want to
transfer memory to/from device every time kernel is called

For complex problems OpenACC grows as complex as CUDA,
but it might get better in the future



Introduction to GPU Programming: CUDA

CUDA EXTENSION TO THE C
PROGRAMMING LANGUAGE
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Storage class qualifiers

Functions

__global __ Device kernels callable from host

__device__ Device functions (only callable from device)
__host __ Host functions (only callable from host)

Data

__shared__ Memory shared by a block of threads executing on a

multiprocessor.

__constant __ Special memory for constants (cached)
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CUDA datatypes

C primatives:
— char,int,fl oat,doubl e, ...

Short vectors:
— int2,int3,int4,uchar2,uchar4,float2,fl oat3,fl oat4, ...

— no built-in vector math (although a utility header, cut i | _mat h. h, defines some
common operations)

Special type used to represent dimensions
— dinB8

Support for user-defined structures, e.g.:
struct particle

{

float3 position, velocity, acceleration;
fl oat nmss;

b
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Library functions available to kernels

o Math library functions:;
— sin,cos,tan,sqgrt, pow,l og, ...
—sinf,cosf,tanf,sqgrtf,powf,| ogf, ...

e |SAINtrinsics
— __sinf, cosf, tanf, powf, |ogf,...

— _mul 24, unul 24, ...

e |ntrinsic versions of math functions are faster but less
precise
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Built-in kernel variables

di n8 gradD m
— number of blocksin grid

di n8 bl ockD m
— number of threads per block

di B bl ockl dx
— number of current block within grid

di n8 t hr eadl dx
— 1ndex of current thread within block
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CUDA kerndls: limitations

* No recursion (on devices older than CC 2.0)
* No variable argument lists

* No dynamic memory allocation

* NoO pointers-to-functions

e NoO static variables inside kernels
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Launching kernels

e Launchable kernelsmust bedeclaredas‘ gl obal __ voi d

~_global  void nyKernel (paraniti st);

o Kernel calls must specify device execution environment
— grid definition — number of blocksin grid
— block definition — number of threads per block
— optionally, may specify amount of shared memory per block (more on that |ater)

e Kernel launch syntax:

nyKer nel <<<G'i dDef, Bl ockDef>>>(paraniLi st);
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Thread addressing

e Kernd launch syntax:

nyKer nel <<<G&i dDef, Bl ockDef >>>(param i st);

« 1 dbef andBl ockDef can bespecifiedasdi nf3
objects
— gridscan be 1D, 2D or 3D
— blocks can be 1D, 2D or 3D

 Thismakesit easy to set up different memory addressing
for multi-dimensional data.



- b
f8ey, - - =

Thread addressing (cont.)

e 1D addressing example: 100 blocks with 256 threads per block:

di n8 gridDef1(100,1,1);
di 8 bl ockDef 1(256, 1, 1);
ker nel 1<<<gri dDef 1, bl ockDef 1>>>( par anii st);

o 2D addressing example: 10x10 blocks with 16x16 threads per block:

di 8 gridbDef 2(10, 10, 1);
di nB bl ockDef 2( 16, 16, 1) ;
ker nel 2<<<gri dDef 2, bl ockDef 2>>>( par anii st);

» Both examples launch the same number of threads, but block and thread
indexing is different

— kernel 1 usesbl ockl dx. x, bl ockDi m x andt hr eadl dx. x
— kernel 2 usesbl ockl dx. [ xy], bl ockD m [ xy],t hreadl dx. [ xy]



Thread addressing (cont.)

e One-dimensional addressing example:

_global__ void kernell(float xidata, float *odata)

{
int 1i;
i = blockIdx.x * blockDim.x + threadIdx.x;
odatal[i] = func(idatalil);

}

 Two-dimensional addressing example:

_global__ void kernel2(float xidata, float xodata, int pitch)

{
int x, y, 1i;
x = blockIdx.x * blockDim.x + threadIdx.x;
y = blockIdx.y * blockDim.y + threadIdx.y;
i =y x pitch + x;
odatal[i] = func(idatalil);

¥

e —— R
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Thread addressing (cont.)

_global__ void kernell(float xidata, float *odata)
{

int i;

i = blockIdx.x * blockDim.x + threadIdx.x;
odatal[i]l = func(idatalil);

by

dim3 gridDef1(100,1,1);
dim3 blockDef1(256,1,1);
kernell<<<gridDef1l, blockDefl>>>(paramList);

Grid

Block Block Block Block Block Block Block
0 1 2 3 4 5 6

Block 4
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Thread addressing (cont.)

_global__ void kernel2(float *idata, float *xodata, int pitch)
{

int x, y, 1i;

X = blockIdx.x * blockDim.x + threadIdx.x;
y = blockIdx.y * blockDim.y + threadIdx.y;
i =

y *x pitch + x;

odatal[i] = func(idatalil);
}

dim3 gridDef2(10,10,1);
dim3 blockDef2(16,16,1);

kernel2<<<gridDef2, blockDef2>>>(paramList);
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Introduction to GPU Programming: CUDA

OPTIMIZATION STRATEGIES
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Beyond the basics...
e Exposing parallelism

 Memory address coalescing
« Shared memory

* Thread synchronization
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Exploiting fully the parallelism of the problem

A GPU hasalarge number of cores, to take full advantage
of the GPU they must all be given something to do.

 |tishence beneficial to have the work to be done
decomposed among a large number of threads.

— GPU architecture can easily handle large numbers of threads
without overhead (unlike CPU)

— for thisto work optimally threads belonging to the same block
must be executing similar (ideally exactly the same) instructions,
operating on different data

— this means one must avoid divergent branches within a block

— size of block should be multiple of 32 (warp size), must not
exceed the maximum for device



|mportant caveat: 1s more threads always useful ?

e Each thread consumes some resources, mainly registers and
shared memory. Given that these resources are limited, the
number of threads “alive’ at any onetime (i.e. actively
running on the hardware) is also limited.

* Hence the benefit of adding more threads tends to plateau.

— one can optimize around the resources needed, especially
registers, to improve performance
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Avoiding transfers between GPU and device

e That Isahuge bottleneck, but unavoidable since GPU has
limited capabilities, most significantly no accessto file
system (note: AMD’s APU Fusion avoids this problem)

e CPU essential because GPU cannot be independent. All

kernels must be launched from the CPU which is the overdl
controller

— changed on Kepler architecture released in late 2012 on which
kernels can launch other kernels

e Using pinned memory helps a bit

« Using asynchronous transfers (overlapping computation and
transfer) also helps
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Optimizing access to global memory

A GPU hasalarge number of coreswith great

computational power, but they must be “fed” with data from
global memory

 |f too little computation done on core relative to memory
transfer, then it becomes the bottleneck.

— most of the time is spent moving datain memory rather than
number crunching

— for many problems this is unavoidable

« Utilizing the memory architecture effectively tendsto be
the biggest challenge in CUDA-fying algorithms
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GPU memory Is high bandwidth/high latency

e A GPU has potentially high bandwidth for data transfer
from global memory to cores. However, the latency for this
transfer for any individual thread is also high (hundreds of
cycles)

e Using many threads, latency can be overcome by hiding it
among many threads.

— group of threads requests some memory, whileit iswaiting for it
to arrive, another group is computing

— the more threads you have, the better this works

e The pattern of global memory access is also very important,
as cache size of the GPU isvery limited.



Global memory accessis fast when coal esced

e |tisbest for adjacent threads belonging to the same warp
(group of 32 threads) to be accessing locations adjacent in
memory (or as close as possible)

« (Good access pattern: thread | accesses global memory array
member a[i]

« |nferior access pattern: thread | accesses global memory
array member as a[i* nstride] where nstride >1

e Clearly, random access of memory is a particularly bad
paradigm on the GPU



Mini quiz

Which of these two access patterns is coal esced?

 A: float A[N][30];
Althreadlax.x [O]:...;
1l=...

Althreadldx.x

e B: roatA[N][S(()j];
A[O][threadldx.x]=...;
Alll|threadldx.x]|=...;



For some problems coalesced access is hard

e Example: matrix transpose

e A bandwidth-limited problem that is dominated by memory
access

Input rows are written as
1(2(3(4|5|6 columns in the output matrix

h

O\ U1 | (N [




The nalve matrix tranpose

_global__ void transpose_naive(float *odata, float xidata, int width,int height)

{

int xIndex, yIndex, index_in, index_out;

blockDim.x * blockIdx.x + threadIdx.x;
blockDim.y * blockIdx.y + threadIdx.y;

xIndex
yIndex

if (xIndex < width && yIndex < height)

{
index_in = xIndex + width * yIndex;
index_out = yIndex + height * xIndex;
odatal[index_out] = idatalindex_in];
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Nalve matrix transpose (cont.)

Since the matrices are stored as
1D arrays, here’s what is
actually happening:

[1]2

[1
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Can this problem be a avoided?

* Yes, by using a special memory which does not have a
penalty when accessed in a non-coal esced way

e On the GPU thisisthe shared memory

e Shared memory accesses are faster than even coal esced
global memory accesses. If accessing same data multiple
times, try to put it in shared memory.

e Unfortunately, it isvery small (48 KB or 16KB)

e Must be managed by the programmer



Shared memory

« Each multiprocessor has some fast
on-chip shared memory

» Threadswithin athread block can
communicate using the shared
memory

e Eachthread in athread block has R/
W accessto all of the shared
memory allocated to a block

e Threads can synchronize using the
intrinsic

N
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__synct hreads();
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Using shared memory

» To coalesce the writes, we will partition the matrix into
32x32 tiles, each processed by a different thread block

« A thread block will temporarily stage itstile in shared
memory by copying ti from the input matrix using
coalesced reads

* Eachtileisthen transposed as it iswritten out to its
properly location in the output matrix

* The main difference hereisthat the tile is written out using
coalesced writes
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Optimized
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matrix transpose

memory

e

copy
Input matrix
(0,0) (1,0) (2,0)
(0,1) (1,1) (2,1)
(0,2) (1,2) (2,2)

transpose on write

Copy of tile in shared

Output matrix

Y,O) (0,1) (0,2)
(1,00 | (1,1) | (1,2)
2,00 | 2,1) | 2,2)




Optimized matrix transpose (1)

_global__ void transpose(float *odata, float xidata,

{

int width, int height)

__shared__ float block[BLOCK_DIM] [BLOCK_DIM];
unsigned int xIndex, yIndex, index_in, index_out;

/* read the matrix tile into shared memory x/
xIndex = blockIdx.x * BLOCK _DIM + threadIdx.x;
yIndex = blockIdx.y *x BLOCK_DIM + threadIdx.y;
if ((xIndex < width) && (yIndex < height))

{

index_in = yIndex * width + xIndex;

block [threadIdx.y] [threadIdx.x] = idatalindex_in];
b
__syncthreads();

/* write the transposed matrix tile to global memory */
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x x BLOCK_DIM + threadIdx.y;
if ((xIndex < height) && (yIndex < width))
{
index_out = yIndex * height + xIndex;
odatal[index_out] = block[threadIdx.x] [threadIdx.y];
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Optimized matrix transpose (cont.)

Copy of tile in shared memory

Copy

Input tile

~
5=

- The input tile is copied into shared
;0 memory row-wise (coalesced reads).

Each row of the input tile becomes a
row in the shared memory tile.
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Optimized matrix transpose (cont.)

opy of tile in shared memory

Output tile
Transpose
The output tile is written row-wise 1:1)9
(coalesced writes) by copying the

corresponding columns from shared
memory.




Mini quiz

With _ syncthreads statement it Is possible to
synchronize:

 A: dll threads belonging to the same warp
« B: al threads belonging to the same block
e C: dl threads belonging to the same kernel




Mini quiz:

What is shared memory in a CPU/GPU system?

. ﬁ: gpecial region of memory visible to both GPU and CPU
ost

e B: special region of memory visibleto all threads in any
GPU kernel

« C: specia region of memory visible to all threads belonging
to the same thread block



Mini quiz:

What isthe typical size of shared memory on
current generation NVIDIA GPUS?

e A:few tensof bytes
« B:few tensof kbytes
e C:.few tens of megabytes




One additional complication: bank conflicts

« Not abig concern but something to keep in mind

« Shared memory bank conflicts occur when thetilein
shared memory Is accessed column-wise

e |llustration of the need to really know the hardware
when coding for GPU

e Bank conflicts matter only in highly optimised code
where other sources of inefficiency have been
eliminated
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Shared memory banks

A NE T J

« To facilitate high memory bandwidth, the shared memory
on each multiprocessor is organized into equally-sized
banks which can be accessed simultaneously

e However, If more than one thread tries to access the same
bank, the accesses must be serialized, causing delays

— thissituation is called a bank conflict

e The banks are organized such that consecutive 32-bit
words are assigned to consecutive banks
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Shared memory banks (cont.)
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e There are 32 banks, thus:

bank# = address % 32

e The number of shared memory banksis closdly tied to the
warp size

e Shared memory accesses are serviced such that the threads
In the first half of awarp and the threads in the second half
of the warp will not cause conflicts

e Thuswehave NUM BANKS = WARP_SI ZE
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Bank conflict solution

 Inthe matrix transpose example, bank conflicts occur when the
shared memory Is accessed column-wise asthetileis being
written

» Thethreadsin each warp access addresses which are offset
from each other by BLOCK DI M elements (with BLOCK DI M

= 32)

e Given 32 shared memory banks, that means that all accesses hit
the same bank!



Bank conflict solution

» Thesolution issurprisingly ssmple — instead of allocating a
BLOCK DI M x BLOCK DI Mshared memory tile, we allocate
aBLOCK DI M x (BLOCK DI M+1) tile

« The extrapadding breaks the pattern and forces concurrent
threads to access different banks of shared memory
— the columns are no longer aligned on 32-word offsets
— no additional changes to the device code are needed



Optimized matrix transpose (2)

{

_global__ void transpose(float xodata, float xidata,

int width, int height)

__shared__ float block[BLOCK_DIM] [BLOCK_DIM + 11;
unsigned int xIndex, yIndex, index_in, index_out;

/* read the matrix tile into shared memory */

xIndex = blockIdx.x x BLOCK_DIM + threadIdx.Xx;

yIndex = blockIdx.y *x BLOCK_DIM + threadIdx.y;

if ((xIndex < width) && (yIndex < height))

{
index_in = yIndex * width + xIndex;
block[threadIdx.y] [threadIdx.x] = idatalindex_in];

b

__syncthreads();

/* write the transposed matrix tile to global memory x/
xIndex = blockIdx.y x BLOCK_DIM + threadIdx.Xx;
yIndex = blockIdx.x x BLOCK_DIM + threadIdx.y;
if ((xIndex < height) && (yIndex < width))
{
index_out = yIndex * height + xIndex;
odatal[index_out] = block[threadIdx.x][threadIdx.y];
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Mini quiz

A bank conflict in a CUDA program occurs when
you have an inefficient access pattern to:

e A: Shared memory.
* B: Global memory.
e C: Host memory.



2. 5 A N E T A’
Helpful tools

« CUDA 5released - supports CC 3.5 features

 CUDA 5 includes Nsight, an Integrated Devel opment
Environment (IDE) for Linux/Mac based on Eclipse. IDE
Incorporates CUDA-aware editor, profiler and debugger in
one close-integrated package. Try it out!

 ThereisaVisua Studio edition of Nsight for Windows

e On SHARCNET the DDT visual debugger has powerful
GPU debugging capability
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Further reading

 CUDA Programming Guide

« CUDA sample projects
— many contain extended documentation

— similarity to the matrix transpose, the reduction project is an
excellent step-by-step walkthrough of how to optimize code for
the hardware (read/write coal escing, shared memory, bank
conflicts, etc.)

« L otsof documentation/presentations/tutorials online
 NVIDIA website - lots of materials





