
OpenMP

Scientific Computing Lecture 19 and 20

SciNet, University of Toronto

Ramses van Zon

March 18 and 20, 2014

OpenMP
I For shared memory

systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time
environment does a lot of
work for us

I Divides up work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

Works by adding compiler directives to code.
Invisible to non-openmp compilers.

OpenMP
I For shared memory

systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time
environment does a lot of
work for us

I Divides up work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

Works by adding compiler directives to code.
Invisible to non-openmp compilers.

OpenMP basic operations
In code:

I In C++, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I These lines are skipped (sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in g++, add the -fopenmp flag
to the compilation and link commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.

To get example code with makefile on SciNet do:
$ git clone /scinet/course/sc3/lc19
$ cd lc19
$ source setup
$ make.

OpenMP example

#include <iostream>
#include <omp.h>
int main(){

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
}

OpenMP example

$ g++ -O2 -o omp-hello-world omp-hello-world.cc -fopenmp

$ export OMP NUM THREADS=8
$./omp-hello-world
...
$ export OMP NUM THREADS=1
$./omp-hello-world
...
$ export OMP NUM THREADS=32
$./omp-hello-world
...

Let’s see what happens. . .

OpenMP example
$ g++ -O2 -o omp-hello-world omp-hello-world.cc -fopenmp
$ export OMP NUM THREADS=8
$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
$ export OMP NUM THREADS=1
$./omp-hello-world
At start of program
Hello, world, from thread 0!
$ export OMP NUM THREADS=32
$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

So what happened precisely?

I OMP NUM THREADS
threads were launched.

I Each prints “Hello, world
. . . ”;

I In seemingly random order.

I Only one “At start of
program”.

$ g++ -O2 -o omp-hello-world omp-hello-world.cc -fopenmp
$ export OMP NUM THREADS=8
$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
$ export OMP NUM THREADS=1
$./omp-hello-world
At start of program
Hello, world, from thread 0!
$ export OMP NUM THREADS=32
$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

So what happened precisely?

#include <iostream>
#include <omp.h>
int main(){

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
}

So what happened precisely?

#include <iostream>
#include <omp.h>
int main(){

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
}

Program starts normally (single thread)�
���

So what happened precisely?

#include <iostream>
#include <omp.h>
int main(){

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
}

At start of parallel section, launching
OMP NUM THREADS threads,
Each executes the same code!

�
�
�
���

}

So what happened precisely?

#include <iostream>
#include <omp.h>
int main(){

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
}

At end of parallel section,
threads join back up,
Execution continues serially.

�
�
�
���

}

So what happened precisely?

#include <iostream>
#include <omp.h>
int main(){

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
}

Special function to find number
of current thread (first=0).

�
�
�
�
���

}

OpenMP functions (from omp.h)

#include <iostream>
#include <omp.h>
int main() {

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << " of "
<< omp get num threads() << "!\n";

}
}

omp get num threads() called by all threads.
Let’s see if we can fix that. . .

OpenMP functions (from omp.h)

#include <iostream>
#include <omp.h>
int main() {

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
std::cout<<"There were "<<omp get num threads()

<<" threads.\n";
}

Strange, says: “There were 1 threads.”
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

OpenMP functions (from omp.h)

#include <iostream>
#include <omp.h>
int main() {

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
std::cout<<"There were "<<omp get num threads()

<<" threads.\n";
}

Strange, says: “There were 1 threads.”

Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

OpenMP functions (from omp.h)

#include <iostream>
#include <omp.h>
int main() {

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
<< omp get thread num() << "!\n";

}
std::cout<<"There were "<<omp get num threads()

<<" threads.\n";
}

Strange, says: “There were 1 threads.”
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

Solution Requires Variables in OpenMP
#include <iostream>
#include <omp.h>
int main() {

int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads)
private(mythread)
{

mythread = omp get thread num();
if (mythread == 0)

nthreads = omp get num threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

I Program runs, lauches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally!

(avoids many bugs)

Solution Requires Variables in OpenMP
#include <iostream>
#include <omp.h>
int main() {

int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads)
private(mythread)
{

mythread = omp get thread num();
if (mythread == 0)

nthreads = omp get num threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

Variable declarations��
���

How used in parallel region

?

I Program runs, lauches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.
I Good idea to declare mythread locally!

(avoids many bugs)

Solution Requires Variables in OpenMP
#include <iostream>
#include <omp.h>
int main() {

int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads)
private(mythread)
{

mythread = omp get thread num();
if (mythread == 0)

nthreads = omp get num threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

Variable declarations��
���

How used in parallel region

?

I default(none) can save you hours of debugging!
I shared: each thread sees it and can modify (be careful!).

Preserves value.
I private: each thread gets it own copy, invisible for others

Initial and final value undefined!
(Advanced: firstprivate, lastprivate – copy in/out.)

I Program runs, lauches threads.
I Each thread gets copy of mythread.
I Only thread 0 writes to nthreads.
I Good idea to declare mythread locally!

(avoids many bugs)

Solution Requires Variables in OpenMP
#include <iostream>
#include <omp.h>
int main() {

int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads)
private(mythread)
{

mythread = omp get thread num();
if (mythread == 0)

nthreads = omp get num threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

I Program runs, lauches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally!

(avoids many bugs)

Solution Requires Variables in OpenMP
#include <iostream>
#include <omp.h>
int main() {

int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads)
private(mythread)
{

mythread = omp get thread num();
if (mythread == 0)

nthreads = omp get num threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

I Program runs, lauches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally!

(avoids many bugs)

Solution Requires Variables in OpenMP
#include <iostream>
#include <omp.h>
int main() {

int nthreads;
#pragma omp parallel default(none) shared(nthreads)
{

int mythread = omp get thread num();
if (mythread == 0)

nthreads = omp get num threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

I Program runs, lauches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally!

(avoids many bugs)

Single Execution using Variables in OpenMP

#include <iostream>
#include <omp.h>
int main() {

int nthreads;
#pragma omp parallel default(none) shared(nthreads)
{

int mythread = omp get thread num();
if (mythread == 0)

nthreads = omp get num threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

I Do we care that it’s thread 0 in particular that updates
nthreads?

I Often, we just want the first thread to go through, do not
care which one.

Single Execution without Variables in OpenMP

#include <iostream>
#include <omp.h>
int main() {

int nthreads;
#pragma omp parallel default(none) shared(nthreads)
#pragma omp single

nthreads = omp get num threads();
std::cout << "There were " << nthreads << "
threads.\n";

}

Loops in OpenMP

Let’s add a loop.

#include <iostream>
#include <omp.h>
int main() {

int i, mythread;
#pragma omp parallel default(none) \
private(i,mythread) shared(std::cout)
{

mythread = omp get thread num();
for (i=0; i<16; i++)

std::cout << "Thread " << mythread
<< " gets i=" << i << "\n";

}
}

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

Loops in OpenMP

Let’s add a loop.

#include <iostream>
#include <omp.h>
int main() {

int i, mythread;
#pragma omp parallel default(none) \
private(i,mythread) shared(std::cout)
{

mythread = omp get thread num();
for (i=0; i<16; i++)

std::cout << "Thread " << mythread
<< " gets i=" << i << "\n";

}
}

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

Loops in OpenMP

Let’s add a loop.

#include <iostream>
#include <omp.h>
int main() {

int i, mythread;
#pragma omp parallel default(none) \
private(i,mythread) shared(std::cout)
{

mythread = omp get thread num();
for (i=0; i<16; i++)

std::cout << "Thread " << mythread
<< " gets i=" << i << "\n";

}
}

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

Worksharing constructs in OpenMP
I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a worksharing construct: omp for.

#include <iostream>
#include <omp.h>
int main() {

#pragma omp parallel default(none) shared(std::cout)
{

int mythread = omp get thread num();
#pragma omp for
for (int i=0; i<16; i++)

std::cout << "Thread " << mythread
<< " gets i=" << i << "\n";

}
}

Worksharing constructs in OpenMP
I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a worksharing construct: omp for.

#include <iostream>
#include <omp.h>
int main() {

#pragma omp parallel default(none) shared(std::cout)
{

int mythread = omp get thread num();
#pragma omp for
for (int i=0; i<16; i++)

std::cout << "Thread " << mythread
<< " gets i=" << i << "\n";

}
}

Worksharing constructs in OpenMP

I omp for construct breaks
up the iterations by thread.

I If doesn’t divide evenly,
does the best it can.

I Allows easy breaking up of
work!

I Advanced: can break up
work of arbitrary blocks of
code with omp task
construct.

./omp loop
thread 3 gets i= 6
thread 3 gets i= 7
thread 4 gets i= 8
thread 4 gets i= 9
thread 5 gets i= 10
thread 5 gets i= 11
thread 6 gets i= 12
thread 6 gets i= 13
thread 1 gets i= 2
thread 1 gets i= 3
thread 0 gets i= 0
thread 0 gets i= 1
thread 2 gets i= 4
thread 2 gets i= 5
thread 7 gets i= 14
thread 7 gets i= 15
$

Less trivial example: DAXPY

I multiply a vector by a
scalar, add a vector.

I (a X plus Y, in double
precision)

I Will implement this, first
serially, then with OpenMP

I daxpy.cc

I make daxpy

z = z+ax+y

Warning

This is a common linear algebra construct that you really shouldn’t
implement yourself. Various BLAS implementations will do a much
better job than you. But good for illustration.

Daxpy - Serial

#include "ticktock.h"
void daxpy(int n,double a,double *x,double *y,double *z) {

for (int i=0; i<n; i++) {
x[i] = (double)i*(double)i;
y[i] = ((double)i+1.)*((double)i-1.);

}
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}
int main() {

int n=10*1000*1000;
double*x=new double[n],*y=new double[n],*z=new dou-
ble[n];
double a = 5./3.;
TickTock tt;
tt.tick();
daxpy(n,a,x,y,z);
tt.tock();
delete [] x; delete [] y; delete [] z;

}

Daxpy - Parallel

void daxpy(int n, double a, double *x, double *y, double *z)
{

#pragma omp parallel default(none) shared(n,x,y,a,z)
{

#pragma omp for
for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;
y[i] = ((double)i+1.)*((double)i-1.);

}
#pragma omp for
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

$ make daxpy
$./daxpy
Tock registers 0.2427 seconds.

[add OpenMP]

$ make daxpy-parallel
g++ -c -I/scinet/gpc/Libraries/boost 1 54 0-gcc4.8.1/include -g
-fopenmp -o daxpy-parallel.o daxpy-parallel.cc
g++ -L/scinet/gpc/Libraries/boost 1 54 0-gcc4.8.1/lib -o
daxpy-parallel daxpy-parallel.o -fopenmp -lboost system
-lboost chrono

$ export OMP NUM THREADS=2
$./daxpy-parallel
Tock registers 0.1458 seconds. 1.66x speedup, 83% efficiency
$ export OMP NUM THREADS=4
$./daxpy-parallel
Tock registers 0.09254 seconds. 2.62x speedup, 66% efficiency
$ export OMP NUM THREADS=8
$./daxpy-parallel
Tock registers 0.06496 seconds. 3.74x speedup, 47% efficiency

Dot Product

I Dot product of two vectors

I Start from a serial
implementation, then will
add OpenMP

I Program tells time, answer,
correct answer.

n = ~x ·~y

=
∑

i

xi yi

$./ndot
Dot product: 3.3333e+20
(vs 3.3333e+20) for
n=10000000.
Took 4.9254e-02 seconds.

Dot Product - Serial
#include <iostream>
#include "ticktock.h"
double ndot(int n, double *x, double *y){

double tot=0;
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}
int main() {

long int n=10*1000*1000;
double *x=new double[n], *y=new double[n];
for (int i=0; i<n; i++) x[i]=y[i]=i;
double ans=(n-1)*n*(2.0*n-1)/6.0;
TickTock tt;
tt.tick();
double dot=ndot(n,x,y);
std::cout << "Dot product: " << dot << " (vs "

<< ans << ") for n=" << n << "\n";
tt.tock();
delete [] x; delete [] y;

}

$ make ndot
$./ndot
Dot product: 3.33333e+20
(vs 3.33333e+20) for n=10000000
Tock registers 0.05371 seconds.

Dot Product - Serial
#include <iostream>
#include "ticktock.h"
double ndot(int n, double *x, double *y){

double tot=0;
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}
int main() {

long int n=10*1000*1000;
double *x=new double[n], *y=new double[n];
for (int i=0; i<n; i++) x[i]=y[i]=i;
double ans=(n-1)*n*(2.0*n-1)/6.0;
TickTock tt;
tt.tick();
double dot=ndot(n,x,y);
std::cout << "Dot product: " << dot << " (vs "

<< ans << ") for n=" << n << "\n";
tt.tock();
delete [] x; delete [] y;

}

$ make ndot
$./ndot
Dot product: 3.33333e+20
(vs 3.33333e+20) for n=10000000
Tock registers 0.05371 seconds.

Towards A Parallel Dot Product

I We could clearly parallelize the loop.

I We need the sum from everybody.

I We could make tot shared, then all threads can add to it.

double ndot(int n, double *x, double *y){
double tot=0;
#pragma omp parallel for \

default(none) shared(tot,n,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp ndot race
$ export OMP NUM THREADS=8
$./omp ndot race
Dot product: 4.99065e+19 (vs 3.33333e+20) for
n=10000000
Tock registered 0.1636 seconds.

Not only is the answer wrong, it was slower to compute!

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:

add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

Race Condition - why it’s slow

I Multiple cores repeatedly
trying to read, access, store
same variable in memory.

I Not (such) a problem for
constants (read only); but
a big problem for writing.

I Sections of arrays – better.

~ ~

~

~

n n

n

n

tot- �
?

6

� -

6

?

OpenMP critical construct

I Defines a critical region.

I Only one thread can be
operating within this region
at a time.

I Keeps modifications to
shared resources saffe.

I #pragma omp critical

double ndot(int n, double *x,
double *y){

double tot=0;
#pragma omp parallel for \

default(none) shared(tot,n,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

$ make omp ndot critical
$ export OMP NUM THREADS=8
$./omp ndot critical
Dot product: 3.33333e+20
(vs 3.33333e+20) for n=10000000
Tock registers 1.243 seconds.

Correct, but 23x slower than serial version!

OpenMP atomic construct

I Most hardware has support
for atomic instructions
(indivisible so cannot get
interrupted)

I Small subset, but
load/add/stor usually one.

I Not as general as critical

I Much lower overhead.

I #pragma omp atomic

double ndot(int n, double *x,
double *y){

double tot=0;
#pragma omp parallel for \

default(none) shared(tot,n,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic
tot += x[i] * y[i];

return tot;
}

$ make omp ndot atomic
$ export OMP NUM THREADS=8
$./omp ndot atomic
Dot product: 3.33333e+20
(vs 3.33333e+20) for n=10000000
Tock registers 0.6732 seconds.

Correct, and better – only 13x slower than serial.

How should we fix the slowdown?

I Local sums.

I Each processor sums its
local values (107/P
additions).

I And then sums to tot
(only P additions with
critical or atomic. . .

n = ~x ·~y

=
∑

i

xi yi

=
∑

p

(∑
i

xi yi

)

Local variables

double tot = 0;
#pragma omp parallel shared(x,y,n,tot)
{

double mytot = 0;
#pragma omp for
for (int i=0; i<n; i++)

mytot += x[i]*y[i];
#pragma omp atomic
tot += mytot;

}

$ export OMP NUM THREADS=8
$./omp ndot local
Dot product: 3.3333e+20
(vs 3.3333e+20) for n=10000000
Tock registered 0.01201 seconds.

Now we’re talking! 4x faster than serial.

OpenMP Reduction Operations

I This is such a common
operation, this is
something built into
OpenMP to handle it.

I “Reduction” variables - like
shared or private.

I Can support several types
of operations: + * min
max . . .

I omp ndot reduction.cc

OpenMP Reduction Operations

double tot = 0;
#pragma omp parallel shared(x,y,n) reduction(+:tot)
{

#pragma omp for
for (int i=0; i<n; i++)

tot += x[i]*y[i];
}

$ export OMP NUM THREADS=8
$./omp ndot reduction
Dot product: 3.33333e+20
(vs 3.33333e+20) for n=10000000
Tock registered 0.01162 seconds.

About the same speed as local variables, simpler code!

Performance

I We threw in 8 cores, got a factor of 4 speedup. Why?

I Often we are limited not by CPU power but by how quickly
we can feed CPUs.

I For this problem, we had 107 long vectors, with 2 numbers 8
bytes long flowing through in 0.012 seconds.

I Combined bandwidth from main memory was 13 GB/s. Not
far off of what we could hope for on the GPC.

I One of the keys to good OpenMP performance is using data
when we have it in cache. Complicated functions: easy. Low
work-per-element (dot product, FFT): hard.

Load Balancing in OpenMP

I So far every iteration of the loop had the same amount of
work.

I Not always the case

I Sometimes cannot predict beforehand how unbalanced the
problem is

OpenMP has work sharing constructs that allow you do statically
or dynamically balance the load.

Example - Mandelbrot Set

I Mandelbrot set simple
example of non-balanced
problem.

I Defined as complex points
a where |b∞| finite, with
b0 = 0 and
bn+1 = b2

n + a.
If |bn| > 2, point diverges.

Lots of work

Little work
�
�	

6

I Calculation:
I pick some nmax
I iterate for each point a, see if crosses 2.
I Plot n or nmax as colour.

Outside of set, points diverge quickly (2-3 steps).
Inside, we have to do lots of work (1000s steps).

I make mandel; ./mandel

First OpenMP Mandelbrot Set

I Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

I But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼
100x800

First OpenMP Mandelbrot Set

I Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

I But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼
100x800

Scheduling constructs in OpenMP

I Default: each thread gets a big consecutive chunk of the loop.
Often better to give each thread many smaller
interleaved chunks.

I Can add schedule clause to omp for to change work sharing.

I We can decide either at compile-time (static schedule) or
run-time (dynamic schedule) how work will be split.

I #pragma omp for schedule(static, m) gives m
consecutive loop elements to each thread instead of a big
chunk.

I With schedule(dynamic, m), each thread will work through
m loop elements, then go to the OpenMP run-time system
and ask for more.

I Load balancing (possibly) better with dynamic, but larger
overhead than with static.

Second Try OpenMP Mandelbrot Set

#pragma omp for schedule(static,50)

I Can change the chunk size
different from ∼ N/nthreads

I In this case, more columns –
work distributed a bit better.

I Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little
one:

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

Second Try OpenMP Mandelbrot Set

#pragma omp for schedule(static,50)

I Can change the chunk size
different from ∼ N/nthreads

I In this case, more columns –
work distributed a bit better.

I Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little
one:

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

Third Try: Schedule dynamic

#pragma omp for schedule(dynamic)

I Break up into many pieces and
hand them to threads when
they are ready.

I Dynamic scheduling.

I Increases overhead, decreases
idling threads.

I Can also choose chunk size.

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

Third Try: Schedule dynamic

#pragma omp for schedule(dynamic)

I Break up into many pieces and
hand them to threads when
they are ready.

I Dynamic scheduling.

I Increases overhead, decreases
idling threads.

I Can also choose chunk size.

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

Tuning

I schedule(static) (default) or schedule(dynamic) are good
starting points.

I To get best performance in badly imbalanced problems, may
have to play with chuck size; depends on your problem and on
hardware.

(static,4) (dynamic,16)

0.084s 0.099s

7/6x 6.4x

95% 79%

Two level loops

In scientific code, usually have nested loopes were all the work is.

Almost without exception, want the loop on the outside-most loop.
Why?

#pragma omp for schedule(static,4)
for (int i=0;i<npix;i++)

for (int j=0;j<npix;j++){
double x=((double)i)/((double)npix);
double y=((double)j)/((double)npix);
std::complex<double> a(x,y);
mymap[i][j]=how many iter real(a,maxiter);

}

A Few More Directives

I #pragma omp ordered - execute the loop in the order it would
have run serially. Useful if you want ordered output in a
parallel region. Never useful for performance.

I #pragma omp master - a block that only the master thread
(thread 0) executes. Usually, #pragma omp single is better.

I #pragma omp sections - execute a list of things in parallel. In
OpenMP 3, task directive (later in lecture) is more powerful

I #pragma omp for collapse(n): nested loops scheduled as one
big loop.

Conditional OpenMP

I There is always overhead associated with starting threads,
splitting work, etc. Also, some jobs parallelize better than
others.

I Sometimes, overhead takes longer than 1 thread would need
to do a job - e.g. very small matrix multiplies.

I OpenMP supports conditional parallelization. Add
if(condition) to parallel region beginning. So, for small tasks,
overhead low, while large tasks remain parallel.

Conditional OpenMP in Action

#include <iostream>
#include <omp.h>
int main(int argc, char *argv[]) {

int n = atoi(argv[1]);
#pragma omp parallel if (n>10)
#pragma omp single

std::cout << "have " << omp get num threads() << "
threads with n=" << n << "\n";

}

$./conditional if 12
have 8 threads with n=12
$./conditional if 9
have 1 threads with n=9
$

First, pull an integer from the
command line. Check to see if
it’s bigger than a number (in
this case, 10). If so, start a
parallel region. Otherwise, ex-
ecute serially.

Controlling # of Threads

I Sometimes you might want more or fewer threads. May even
want to change while running.

I omp set num threads(int) sets or changes the number of
threads during runtime.

omp set num threads() in action

#include <iostream>
#include <omp.h>
int main(int argc,char *argv[]){

//find # of physical cores
//this is an openmp library routine.
int max threads=omp get num procs();
int n=atoi(argv[1]);
//set # threads equal to input
//assuming it’s less than max threads if
(n<max threads)

omp set num threads(n);
else

omp set num threads(max threads);
#pragma omp parallel
#pragma omp single
std::cout << "Running with " <<
omp get num threads() << " threads for n=" << n
<< ".\n";

}

Non-loop construct

OpenMP supports non-loop parallelism as well:

I Sections:

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

something to do
}
#pragma omp section
{

something to do
at the same time

}
}

}

I More flexible: tasks

Tasks

I OpenMP ≥ 3.0 supports the #pragma omp task directive.

I A task is a job assigned to a thread. Powerful way of
parallelizing non-loop problems.

I Tasks should help omp/mpi hybrid codes - one task can do
communications, rest of threads keep working.

I Like all omp, tasks must be called from parallel region.

I Raises complication of nested parallelism (what happens if a
parallel loop called from parallel loop?).

Tasks: test task.cc
#include <iostream>
#include <omp.h>
int main(){

#pragma omp parallel
#pragma omp single
{

std::cout << "hello";
#pragma omp task
{

std::cout << "hello 1 from " <<
omp get thread num() << ".";

}
#pragma omp task
std::cout << "hello 2 from " <<
omp get thread num() << ".";

}
}

Often want to start tasks from as if from serial region. Must be in
parallel for tasks to spawn, so #pragma omp parallel followed by
#pragma omp single very useful. What would happen w/out
#pragma omp single?

Beauty of Tasks

I Some otherwise-hard-to-parallelize problems fit well into tasks.

I Example (from standard): parallel tree processing.

I Each node has left, right pointers.

I Works for a variety of non-array structure (linked lists, etc.)

struct node {
node *left, right;
...

};
void traverse(node* p) {

if (p->left)
#pragma omp task firstprivate(p)
traverse(p->left);

if (p->right)
#pragma omp task firstprivate(p)
traverse(p->right);

process(p);
}

Parallel traversal starts thusly:

int processall(node*root)
{

#pragma omp parallel
#pragma omp single
traverse(root);

}

Beauty of Tasks #2

Linked list:
struct node {

node *next;
...

};
void traverse linked list(node* head) {

#pragma omp parallel
#pragma omp single
{

node* n = head;
while (n != NULL) {

#pragma omp task firstprivate(n)
process(n);
n = n->next;

}
}

}

The Cost of Beauty

I While elegant there’s substantial overhead for tasks:

I Need to store code and data together as a package (that’s
why all the firstprivate clauses are needed).

I Task has to be put in some sort of queue, and executed when
a thread is idle.

I In contrast, in a default-scheduled loop, there is only one task
per thread.

I Tasks only cost effective if the ’process’ is compute-heavy.

I For fairly light tasks, ’serializing’ the tree or linked list, i.e.,
convering it to an array and openmp-ing that may be
necessary to get good scaling: Homework!

Homework 10

	Introduction to OpenMP
	Basics
	Variables in OpenMP
	Single execution
	Loops
	Reductions
	Load balancing

