
Hadoop for HPCers:
A Hands-On Introduction

• VM Test	

• High Level Overview	

• Hadoop FS	

• Map Reduce	

• Hadoop MR + Python	

• Hadoop MR	

• Break	

• Hands On with Examples	

• Word count	

• Inverted Index	

• Document Similarity	

• Matrix Multiplication	

• Diffusion

Agenda

Jonathan Dursi, SciNet 	

Michael Nolta, CITA

Part I: Overview,
MapReduce

Detailed VM instructions
• Install VirtualBox (free) for your system.	

• Download and unzip the course VM from http://support.scinet.utoronto.ca/~ljdursi/
SciNetHadoopVM.zip	

• Start Virtual box; click “New”; give your VM a name. Select “Linux” as Type, and “Ubuntu” as Version.
Give your VM at least 2048MB RAM, more would be better.	

• Select “Use an existing virtual hard drive”, and choose the .vdi file you downloaded. Click “Create”.	

• Before starting your VM, enable easy network access between the host and VM.	

• Go into the VirtualBox app preferences VirtualBox > Preferences > Network and, if one doesn’t
already exist, add a host-only network.	

• Select the new VM and click “Settings”. Under “System”, make sure “Enable IO APIC” is checked.
Then under “Network”, select “Adapter 2″, Enable it, and attach it to “Host-only adapter”.
Click “OK”. This will allow you to easily transfer files to and from your laptop and the
virtual machine. 	

• Also under “System”, then “Processor”, give your VM a couple of cores to play with; for safety, you
might want to bring down the Execution cap to 50% or so.	

• Start the VM; username is hadoop-user, password is hadoop.	

• Open a terminal; run “source ./init.sh”

https://www.virtualbox.org
http://support.scinet.utoronto.ca/~ljdursi/SciNetHadoopVM.zip

Let’s Get Started!

• Fire up your course VM	

• Open terminal;  
source init.sh 
cd wordcount 
make	

• You’ve run your (maybe) first
Hadoop job!

Hadoop

• 2007 OSS implementation of 2004 Google
MapReduce paper	

• Consists of distributed filesytem HDFS,
core runtime, an implementation of Map-
Reduce.	

• Hardest to understand for HPCers: Java	

• Pronounced “Hay-doop”.

Hadoop Ecosystem

• 2008+ - usage
exploded	

• Creation of many
tools building atop
Hadoop
infrastructure	

• Met a real need

Spark/Shark	

iterative computing

Mahout	

data mining

Impala	

Interactive DB

• Data volumes
increasing massively	

• Clusters, storage
capacity increasing
massively	

• Disk speeds are not
keeping pace.	

• Seek speeds even
worse than read/write

Mahout	

data mining

D
is

k
(M

B/
s)

, C
PU

 (
M

IP
S) 1000x!

Data Intensive
Computing

Scale-Out

• Disk streaming speed ~
50MB/s	

• 3TB =17.5 hrs	

• 1PB = 8 months	

• Scale-out (weak scaling) -
filesystem distributes data
on ingest

Scale-Out

• Seeking too slow	

• Batch processing	

• Pass through entire data set in one (or small
number) of passes

Combining results

• Each node pre-
processes its local data	

• Shuffles its data to a
small number of other
nodes	

• Final processing, output
is done there

Fault Tolerance

• Data also replicated upon
ingest	

• Runtime watches for
dead tasks, restarts them
on live nodes	

• Re-replicates

What is it good at?
• “Classic” Hadoop is all about batch

processing of massive amounts of
data	

• (Not much point below ~1TB)	

• Map-Reduce is relatively loosely
coupled; one “shuffle” phase.	

• Very strong weak scaling in this
model - more data, more nodes.	

• Batch: process all data in one go w/
classic Map Reduce	

• (New Hadoop has many other
capabilities besides batch)

tightly	

coupled

loosely	

coupled

batchinteractive

Databases

MPI

Hadoop	

Map-Reduce

What is it good at?

• Compare with databases - very
good at working on small
subsets of large databases	

• DBs - very interactive for many
tasks	

• DBs - have been difficult to scale

tightly	

coupled

loosely	

coupled

highly parallelserial

DB

MPI

Hadoop	

Map-Reduce

What is it good at?

• Compare with HPC (MPI) 	

• Also typically batch	

• Can (and does) go up to
enormous scales	

• Works extremely well for
very tightly coupled problems:
zillions of iterations/
timesteps/exchanges.

tightly	

coupled

loosely	

coupled

highly parallelserial

MPI

DB Hadoop	

Map-Reduce

Hadoop vs HPC

• We HPCers might be tempted to an unseemly smugness.  

• “They solved the problem of disk-limited, loosely-coupled, data
analysis by throwing more disks at it and weak scaling?
Ooooooooh.”

Hadoop vs HPC

• We’d be wrong.	

• A single novice developer
can write real, scalable,
1000+ node data-processing
tasks in Hadoop-family tools
in an afternoon.	

• MPI... less so.

High

D
ev

el
op

er
 P

ro
du

ct
iv

ity

highly parallelserial

DB

MPI

Hadoop + 
Ecosystem

Low

Data Distribution: Disk

• Hadoop and similar
architectures handle one
hard part of parallelism for
you - data distribution.	

• On disk: HDFS distributes,
replicates data as it comes in	

• Keeps track; computations
local to data

Data Distribution: Network

• On network: Map Reduce
works in terms of key-value
pairs.	

• Preprocessing (map) phase
ingests data, emits (k,v) pairs	

• Shuffle phase assigns
reducers, gets all pairs with
same key onto that reducer.	

• Programmer does not have
to design communication
patterns

(key1,83) (key2, 9)(key1,99) (key2, 12)(key1,17) (key5, 23)

(key1,[17,99]) (key5,[23,83]) (key2,[12,9])

Makes the problem
easier

• Decomposing the problem,
and, 	

• Getting the intermediate
data where it needs to go,	

• ... are the hardest parts of
parallel programming with
HPC tools.	

• Hadoop does that for you
automatically for a wide
range of problems.

High

D
ev

el
op

er
 P

ro
du

ct
iv

ity

highly parallelserial

DB

MPI

Hadoop + 
Ecosystem

Low

Built a reusable
substrate

• The filesystem (HDFS) and the
MapReduce layer were very well
architected.	

• Enables many higher-level tools	

• Data analysis, machine learning,
NoSQL DBs,...	

• Extremely productive environment	

• And Hadoop 2.x (YARN) is now much
much more than just MapReduce

Spark/Shark	

iterative computing

Mahout	

data mining

Impala	

Interactive DB

• Not either-or anyway	

• Use HPC to generate big / many
simulations, Hadoop to analyze results	

• Use Hadoop to preprocess huge input data
sets (ETL), and HPC to do the tightly
coupled computation afterwards.	

• Besides, ...

Hadoop vs HPC
and

1: Everything’s Converging

• These models are all
converging at the largest scales	

• Good ideas are good ideas.	

• MPI is trying to grow fault
tolerance (but MPI codes?)	

• DBs are trying to scale up

fault 	

tolerance

massive	

parallelism

tightly coupled

Hadoop

MPI

DBs

1: Everything’s Converging

• People are building tools for
tightly coupled computation
atop Hadoop-like
frameworks	

• Hadoop will probably do
tightly coupled well long
before MPI codes do fault
tolerance (cf. Spark,
Giraph…)

fault 	

tolerance

massive	

parallelism

tightly coupled

Hadoop

MPI

DBs

2: Computation is
Computation

• These models of computation aren’t
that different	

• Different problems fall in different
models’ “sweet spots”.	

• In VM, cd ~/diffusion; make	

• (will take a while)	

• Distributed 1d diffusion PDE	

• Will also look at (more reasonably)
sparse matrix multiplication

Hadoop Job Workflow

• Let’s take a look at the
Makefile in the wordcount
example	

• Three basic tasks; building
program; copying files in;
running; getting output

Hadoop Job Workflow

• Building program; compile to bytecode against the current
version of Hadoop	

• Build a .jar file which contains all the relevant classes; this .jar file
gets shipped off in its entirety to workers

Hadoop Job Workflow

• Running the program: must first copy the input files (hdfs dfs -
put) onto the Hadoop file system	

• Remove (hdfs dfs -rm -r) the output directory if it exists	

• Run the program by specifying the input jar file and the class of
the program, and give it any arguments	

• Type out (cat) the output file.

The Hadoop Filesystem

• HDFS is a distributed parallel
filesytem	

• Not a general purpose file system	

•doesn’t implement posix	

•can’t just mount it and view files	

• Access via “hdfs dfs” commands	

• Also programatic (java) API	

• Security slowly improving

hdfs dfs -[cmd]

cat	

chgrp	

chmod	

chown	

copyFromLocal	

copyToLocal	

cp	

du	

dus	

expunge	

get	

getmerge	

ls	

lsr	

mkdir	

movefromLocal	

mv	

put	

rm	

rmr	

setrep	

stat	

tail	

test	

text	

touchz

The Hadoop Filesystem

Required to be:	

• able to deal with large files, large amounts of
data	

• scalable	

• reliable in the presence of failures	

• fast at reading contiguous streams of data	

• only need to write to new files or append to
files	

• require only commodity hardware

The Hadoop Filesystem
As a result:	

• Replication	

• Supports mainly high bandwidth, not low
latency	

• No caching (what’s the point if just
streaming reads)	

• Poor support for seeking around files	

• Poor support for zillions of files	

• Have to use separate API to see
filesystem	

Modeled after Google File System (2004
Map Reduce paper)

Blocks in HDFS

• HDFS is a block-based file system.	

• A file is broken into blocks, these
blocks are distributed across nodes	

• Blocks are large; 64MB is default,
many installations use 128MB or
larger	

• Large block size - time to stream a
block much larger than time disk time
to access the block.	

• hdfs fsck / -files -blocks lists all blocks
in all files

Datanodes and
Namenode

Two different types of nodes in
the filesystem	

Namenode - stores all metadata
and block locations in memory. 	

•Updates are stored to
persistent journal	

•Lots of files bad	

Datanodes - store and retrieve
blocks for client or namenode

Namenode

all metadata

/user/ljdursi/wordcount

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Datanodes and
Namenode

• Newer versions of Hadoop -
federation (different namenodes
for /user, /data, /project , etc)	

• Newer versions of Hadoop -
High Availability namenode pairs

Namenode

all metadata

/user/ljdursi/wordcount

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Writing a file

Writing a file multiple stage
process	

•Create file	

•Get nodes for blocks	

•Start writing	

•Data nodes coordinate
replication	

•Get ack back 	

•Complete

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Write newdata.dat

1. create

Writing a file

Writing a file multiple stage
process	

•Create file	

•Get nodes for blocks	

•Start writing	

•Data nodes coordinate
replication	

•Get ack back 	

•Complete

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Write newdata.dat

2. get nodes

Writing a file

Writing a file multiple stage
process	

•Create file	

•Get nodes for blocks	

•Start writing	

•Data nodes coordinate
replication	

•Get ack back 	

•Complete

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Write newdata.dat

3. start writing

Writing a file

Writing a file multiple stage
process	

•Create file	

•Get nodes for blocks	

•Start writing	

•Data nodes coordinate
replication	

•Get ack back 	

•Complete

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Write newdata.dat

4. repl

Writing a file

Writing a file multiple stage
process	

•Create file	

•Get nodes for blocks	

•Start writing	

•Data nodes coordinate
replication	

•Get ack back (while writing)	

•Complete

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Write newdata.dat

5. ack

Writing a file

Writing a file multiple stage
process	

•Create file	

•Get nodes for blocks	

•Start writing	

•Data nodes coordinate
replication	

•Get ack back 	

•Complete

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Write newdata.dat

6. complete

Where to Replicate?
• Tradeoff to choosing replication

locations	

• Close: faster updates, less network
bandwidth	

• Further: better failure tolerance	

• Default strategy: first copy on
different location on same node,
second on different “rack”(switch),
third on same rack location, different
node.	

• Strategy configurable.	

• Need to configure Hadoop file system
to know location of nodes

rack1 rack2

switch 1 switch 2

Reading a file

Reading a file shorter 	

•Get block locations	

•Read

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Read lines 1...1000 from bigdata.dat

1. Open

Reading a file

Reading a file shorter 	

•Get block locations	

•Read

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Read lines 1...1000 from bigdata.dat

2. Get block locations

Reading a file

Reading a file shorter 	

•Get block locations	

•Read

Namenode

/user/ljdursi/diffuse

bigdata.dat

datanode1 datanode2 datanode3

Client: 	

Read lines 1...1000 from bigdata.dat

3. read blocks

Configuring HDFS

• Need to tell HDFS how to set
up filesystem	

• data.dir, name.dir - where on
local system (eg, local disk) to
write data	

• parameters like replication -
how many copies to make	

• default name - default file
system to use 	

• Can specify multiple

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://your.server.name.com:9000</value>
 </property>
!
 <property>
 <name>dfs.data.dir</name>
 <value>/home/username/hdfs/data</value>
 </property>
!
 <property>
 <name>dfs.name.dir</name>
 <value>/home/username/hdfs/name</value>
 </property>
!
 <property>
 <name>dfs.replication</name>
 <value>3</value>
 </property>
</configuration>

Configuring HDFS

For us:	

•Only one node to be used,
our laptops	

•default: localhost

!
<configuration>
!
 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
 </property>
!
</configuration>

$HADOOP_PREFIX/etc/hadoop/core-site.xml

Configuring HDFS

• Since only one node, need to
specify replication factor of 1, or
will always fail

<configuration>
. . .
!
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>
!
</configuration>

$HADOOP_PREFIX/etc/hadoop/hdfs-site.xml

Configuring HDFS

• Also need to make sure that
environment variables are set	

• path to Java, path to Hadoop

... !
export JAVA_HOME=/usr/lib/jvm/default-java
export HADOOP_VERSION=1.1.2
export HADOOP_PREFIX=/path/to/hadoop-${HADOOP_VERSION} !
...

~/.bashrc

... !
export JAVA_HOME=/usr/lib/jvm/default-java !

...

$HADOOP_PREFIX/etc/hadoop/hadoop-env.sh

Configuring HDFS

• Finally, have to make sure that passwordless login is enabled	

• Can start processes on various FS nodes

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Configuring HDFS

• Once configuration files are set
up, can format the namenode
like so	

• Then you can start up just the
file systems:

. . .
$ hdfs namenode -format
$ start-dfs.sh
. . .

Done for you in init.sh

Using HDFS
• Now once the file system is up and

running, you can copy files back and
forth	

•get/put, copyFromLocal/
copyToLocal

• Default wd is  
/user/${username} 	

• Nothing like a “cd”	

• Try copying a Makefile or something to
HDFS, doing an ls, then copying it back
and make sure it’s stayed same.

cat	

chgrp	

chmod	

chown	

copyFromLocal	

copyToLocal	

cp	

du	

dus	

expunge	

get	

getmerge	

ls	

lsr	

hadoop fs -[cmd]
mkdir	

movefromLocal	

mv	

put	

rm	

rmr	

setrep	

stat	

tail	

test	

text	

touchz

Hadoop Job Workflow

Building the program	

Running a “Map Reduce” program...

MapReduce

• Two classes of compute tasks: a
Map and a Reduce	

• Map processes one “element” at
a time, emits results as (key,
value) pairs.	

• All results with same key are
gathered to the same reducers	

• Reducers process list of values,
emit results as (key, value) pairs.

(key5,83) (key2, 9)(key1,99) (key2, 12)(key1,17) (key5, 23)

(key1,[17,99]) (key5,[23,83]) (key2,[12,9])

Map

• All coupling is done during the
“shuffle” phase	

• Embarrassingly parallel task - all
map	

• Take input, map it to output,
done.	

• (Famous case: NYT using
Hadoop to convert 11 million
image files to PDFs - almost
pure serial farm job)

Reduce

• Reducing gives the coupling	

• In the case of the NYT task, not
quite embarrassingly parallel;
images from multi-page articles	

• Convert a page at a time, gather
images with same article id onto
node for conversion.

(key5,83) (key2, 9)(key1,99) (key2, 12)(key1,17) (key5, 23)

(key1,[17,99]) (key5,[23,83]) (key2,[12,9])

Shuffle

• The shuffle is part of the
Hadoop magic	

• By default, keys are hashed and
hash space is partitioned
between reducers	

• On reducer, gathered (k,v) pairs
from mappers are sorted by key,
then merged together by key	

• Reducer then runs on one  
(k,[v]) tuple at a time

(key5,83) (key2, 9)(key1,99) (key2, 12)(key1,17) (key5, 23)

(key1,[17,99]) (key5,[23,83]) (key2,[12,9])

Shuffle

• If you do know something about
the structure of the problem,
can supply your own partitioner 	

• Assign keys that are “similar” to
each other to same node	

• Reducer still only sees one (k,
[v]) tuple at a time.

(key5,83) (key2, 9)(key1,99) (key2, 12)(key1,17) (key5, 23)

(key1,[17,99]) (key5,[23,83]) (key2,[12,9])

Word Count

• Was used as an example in the
original MapReduce paper	

• Now basically the “hello world”
of map reduce	

• Do a count of words of some
set of documents.	

• A simple model of many actual
web analytics problem

Hello World !
Bye World

file01

Hello Hadoop
Goodbye Hadoop

file02

Hello 2!
World 2!
Bye 1!
Hadoop 2!
Goodbye 1

output/part-00000

Word Count

• How would you do this with a
huge document?	

• Each time you see a word, if it’s
a new word, add a tick mark
beside it, otherwise add a new
word with a tick	

• ...But hard to parallelize
(updating the list)

Hello World !
Bye World

file01

Hello Hadoop
Goodbye Hadoop

file02

Hello 2!
World 2!
Bye 1!
Hadoop 2!
Goodbye 1

output/part-00000

Word Count

• MapReduce way - all hard work
is done by the shuffle - eg,
automatically.	

• Map: just emit a 1 for each word
you see

Hello World !
Bye World

file01

Hello Hadoop
Goodbye Hadoop

file02

(Hello,1)!
(World,1)!
(Bye, 1)!
(World,1)

(Hello, 1)!
(Hadoop, 1)!
(Goodbye,1)!
(Hadoop, 1)

Word Count

• Shuffle assigns keys (words)
to each reducer, sends (k,v)
pairs to appropriate
reducer	

• Reducer just has to sum up
the ones

(Hello, 1)!
(Hadoop, 1)!
(Goodbye,1)!
(Hadoop, 1)

(Hello,1)!
(World,1)!
(Bye, 1)!
(World,1)

Hello 2!
World 1!
Bye 1

Hadoop 2!
Goodbye 1

(Hello,[1,1])!
(World,[1,1])!

(Bye, 1)
(Hadoop, [1,1])!

(Goodbye,1)

Hadoop Job Workflow

• Building the program	

• Class is expected to have particular methods	

• Let’s look at WordCount.java

main()

• The main() routine in a
MapReduce computation
creates a Job with a
Configuration	

• Set details of Input/Output,
etc	

• Then runs the job.

main()

• The heart of doing work
in Hadoop originally was
MapReduce	

• Create a Map routine and
a Reduce routine	

• Wire those into the job.	

• (Reduce is optional)

Python/Hadoop count

• Before getting into the Java, let’s
look at a language probably
more familiar to most of us.	

• A mapper task - just reads the
stdin stream pointed at it, spits
out tab-separated lines (word,1)

map.py

Python/Hadoop count

• A simple reducer	

• gets partitioned sorted streams
of 
(Hello,1)  
(Hello,1)  
(Goodbye,1)	

• and sums the counts	

• prints (word,sum) at end

map.py

reduce.py

Python/Hadoop count
Can use this approach in serial using standard shell tools:

$ cd wordcount-streaming
!
$ cat input/*
Hello World Bye World
Hello Hadoop Goodbye Hadoop
!
$ cat input/* | ./map.py | sort | ./reduce.py
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

Python/Hadoop count
• Can also fire this off in parallel with Hadoop	

• “streaming interface”, designed to work with other languages	

• Hadoop decides how many maps, reduces to fire off

$ hadoop jar $(STREAMING_DIR)hadoop-streaming-$(HADOOP_VERSION).jar \!
! ! -file ./map.py -mapper ./map.py \!
! ! -file ./reduce.py -reducer ./reduce.py \!
! ! -input $(INPUT_DIR) \!
! ! -output $(OUTPUT_DIR)

• Other interfaces for more programatic interfaces
(Pipes - C++; Dumbo - better Python interface, etc)	

• Streaming seems to work roughly as well or better

Number of mappers

• Mapping is tightly tied to
the Hadoop file system	

• Block-oriented	

• “Input splits” - blocks of
underlying input files	

• One mapper handles all the
records in one split	

• One mapper per input split	

• Only one replication is
mapped usually

Mapper and I/O

• The code for your mapper
processes one record	

• The map process executes it for
every record in the split	

• It gets passed in one (key, value)
pair, and updates an “Output
Collector” with a new (key,
value) pair.

• Mapper works one record
at a time	

• That means the input file
format must have a way to
indicate “end of record”.	

• We’re going to be using
plain text file, because easy
to understand, but there
are others (often more
appropriate for our
examples)

Mapper and I/O

• If record crosses block
boundary, must be sent
across network	

• Another good reason for
large blocks - small fraction
of data has to be sent

Mapper and I/O

• Mappers can work with
compressed a files	

• But obviously works best if
the compression algorithm
is “splittable” - do you need
to read the whole file to
understand a chunk?	

• bzip2 - slow but splittable	

• Other possibilities

Mapper and I/O

• Mapper doesn’t explicitly
do any I/O	

• Input is wired up at job
configuration time	

• Set Input format and input
paths

Mapper and I/O

• Similarly, reducer doesn’t
explicitly do any I/O	

• Set the output format, and
the output Key/Value types
that will be written.	

• Send output to an
OutputCombiner, and
output gets sent out.	

• At the end, each reducer
writes out its own file, part-
r-N

Reducer and I/O

• Number of mappers set by
input splits	

• Can suggest reducing that	

• Set of reducers is by default
chosen based on input size
amongst other things	

• Our problems here - always
so small that only one is
used (only part-r-00000)

Number of reducers

part-r-00000 part-r-00001 part-r-00002

• Can explicitly set number of
reduce tasks	

• Try this - in streaming example, do  
make run-2reducers	

• or in WordCount.java, main, add
line  
job.setNumReduceTasks(2);	

• Different reducers get different
words (keys), different outputs
from these keys	

• hdfs dfs -getmerge : gets all files in
a directory and cat’s them

Number of reducers

part-00000 part-00001

Goodbye!1!
Hadoop! 2

Bye! 1!
Hello! 2!
World! 2

MapReduce in Java

• In a strongly typed language, we
have to pay a bit more attention
to types than with just text
streams	

• Everything’s a key-value pair, but
don’t have to have same type.	

• In our examples, always using
TextInputFormat, so (k1,v1) is
always going to be Object (line
w/in split) and Text, but others
could change

(k1,v1)

(k2,v2)

(k3,v3)

(k2,[v2])

• Input types determined
input format 	

• Reduce outputs specified
by the Output Key/Value
classes	

• If not specified, assumed
output of mapper (=input
of reduce) same as output
of reduce. (k2=k3, v2=v3)

MapReduce in Java

• Map implements
Mapper<k1,v1,k2,v2>	

• Note “special” types -
IntWritable, not Integer;  
Text, not String	

• Hadoop comes with its
own set of classes which
“wrap” standard classes but
implement Write methods
for serialization (to
network or disk).

Map in Java

• k2,v2 - Text, IntWriteable	

• eg, (“word”, 1)	

• Actual work done is very
minimal;	

• Get the string out of the
Text value;	

• Tokenize it (split it by
spaces)	

• While there are more
tokens,	

• emit (word,one)

Map in Java

• k2,v2 - Text, IntWriteable
(check)	

• k3,v3 also Text,IntWriteable	

• Incoming values for a given
key are pre-concatenated
into an iterable	

• (couldn’t do this for
streaming interface; don’t
know enough about
structure of keys/values.)

Reduce in Java

• Work is very simple.	

• Operates on a single (k,[v]).	

• Loop over values (have
to .get() the Integer from
the IntWritable)	

• sum them up	

• Make a new IntWritable
with value from sum	

• Collect (key,sum)

Reduce in Java

• One more useful thing to
know	

• You can have a “combiner”.	

• Run by each mapper on the
output of the mapper,
before its fed to the shuffle.	

• Required (k2,[v2])→(k2,v2)

Combiners

• One more useful thing to
know	

• You can have a “combiner”.	

• Run by each mapper on the
output of the mapper,
before its fed to the shuffle.	

• Required (k2,[v2])→(k2,v2)	

• Dumb to send every (the,1)
over the network; combine
lets you collate the output
of each mapper individually
before feeding to reducers

Combiners
Hello World !
Bye World

Hello Hadoop
Goodbye Hadoop

(Hello,1)!
(World,1)!
(Bye, 1)!
(World,1)

(Hello, 1)!
(Hadoop, 1)!
(Goodbye,1)!
(Hadoop, 1)

map

combine
(Hello,2)!
(World,1)!
(Bye, 1)

(Hello, 1)!
(Hadoop, 2)!
(Goodbye,1)

• In this case, the combiner is
just the reducer	

• Not all problems lend
themselves to the obvious
use of a combiner, and in
general it won’t be identical
to the reducer.	

• If reducer is commutative
and associative, can use as
the combiner.

Combiners

• More to get you into the
mode of writing Java	

• We have the same example
in wordcount-worksheet, but
with the guts of map, reduce
left out.	

• Practice writing the code.
Feel free to google for how
to do things in Java, but don’t
just blast the lines from
examples...	

• Can use your favourite local
editor and scp file to VM

First hands-on

• To copy files back and forth,
find the IP a of the VM	

• (We enabled this in
virtualbox with the IO
APIC/Adapter 2 stuff)	

• hadoop-user/hadoop

First hands-on

$ ifconfig | grep 192!
 inet addr:192.168.56.101 [...]

VM:

Host
$ scp WordCount.java hadoop-user@192.168.56.101:!
hadoop-user@192.168.56.101's password: hadoop

mailto:hadoop-user@192.168.56.101?subject=
mailto:hadoop-user@192.168.56.101?subject=

• Open browser on laptop	

• go to (e.g.)  
http://192.168.56.101:8088	

• Look at the previous jobs run	

• Hadoop has to keep track of
the running of individual map,
reduce tasks and job status for
fault-tolerance reasons	

• Presents a nice web interface
to the hadoop cluster

Web Monitor

192.168.56.101:8088

Beyond WordCount

• Let’s start going a little bit
beyond simple wordcount	

•cd ~/inverted-index  
make run!

• First, take a look at word count
broken down by document	

• 5 new papers each from 8
disciplines, taken from arxiv,
pdftotext

abstract galaxy!
supernova star

astro_01

abstract gene!
expression dna

genomics_03

astro_01 abstract 1!
astro_01 galaxy 1!
genomics_03 abstract 1!
genomics_03 gene 1

output/part-00000

WordCount by Doc

• Map is a little more
sophisticated - strips out “stop
words” (‘the’, ‘and’, ...)	

• Also only pay attention to
“words” > 3 letters (strip out
noise from pdf-to-text
conversion - eqns, etc)

WordCount by Doc

• Mapper: while the value here is
still one, the key is now filename
+ “ ” + word	

• (why?)

WordCount by Doc

• Reducer is exactly the same

Inverted Index:

• Want to use this as a starting
point to build an inverted index	

• For each word, in what
documents does it occur?	

• What is going to be the key out
of the mapper? The value?	

• What is going to be the
reduction operation?

abstract galaxy!
supernova star

astro_01

abstract gene!
expression dna

genomics_03

abstract astro_01 genomics_03!
galaxy astro_01!
gene genomics_03 !
supernova astro_01!
expression genomics_03

output/part-00000

Hands on:

• Implement the inverted index 	

• For now, don’t worry about
repeated items	

• InvertedIndex.java	

• Test with  
make runinverted

abstract galaxy!
supernova star

astro_01

abstract gene!
expression dna

genomics_03

abstract astro_01 genomics_03!
galaxy astro_01!
gene genomics_03 !
supernova astro_01!
expression genomics_03

output/part-00000

Document Similarity

• Wordcount-by-document:	

• “Bag of words” approach	

• Document is characterized by
its wordcounts	

• Can find similarity of two
documents through normalized
dot product of their vector
representation.

abstract galaxy!
supernova expression

astro_01

abstract gene!
expression dna

genomics_03

{abstract:1, galaxy:1, supernova:1, star:1}

genomics_03 {abstract:1, gene:1, expression:1, dna:1}

astro_01

Sa,g =
wa · wg

||wa|| · ||wg||

Document Similarity

cd ~/document-similarity  
make

abstract galaxy!
supernova expression

astro_01

abstract gene!
expression dna

genomics_03

{abstract:1, galaxy:1, supernova:1, star:1}

genomics_03 {abstract:1, gene:1, expression:1, dna:1}

astro_01

Sa,g =
wa · wg

||wa|| · ||wg||

Document Similarity

• Wordcount-by-document:	

• “Bag of words” approach	

• Document is characterized by
its wordcounts	

• Can find similarity of two
documents through normalized
dot product of their vector
representation.

1 1 1 1
ab

str
ac

t

ga
lax

y
su

pe
rn

ov
a

ge
ne

ex
pr

es
sio

n

dn
a

sta
r

1 1 1 1

a= (

g= (

)

)

Sa,g =
wa · wg

||wa|| · ||wg||

=
1

2 · 2

=
1
4

Document Similarity

• So taken the bags-of-words as a
given, how do we do the
computation?	

• What’s the map phase, and the
reduce phase?

1 1 1 1
ab

str
ac

t

ga
lax

y
su

pe
rn

ov
a

ge
ne

ex
pr

es
sio

n

dn
a

sta
r

1 1 1 1

a= (

g= (

)

)

Sa,g =
wa · wg

||wa|| · ||wg||

=
1

2 · 2

=
1
4

Document Similarity

• Easiest to think about the
reduce phase first.	

• What is going to be the
single computation done by
a single reducer?	

• And what information does
it need to perform that
computation?

1 1 1 1
ab

str
ac

t

ga
lax

y
su

pe
rn

ov
a

ge
ne

ex
pr

es
sio

n

dn
a

sta
r

1 1 1 1

a= (

g= (

)

)

Sa,g =
wa · wg

||wa|| · ||wg||

=
1

2 · 2

=
1
4

Document Similarity:
Reducer

• The single piece of computation
that needs to be done at the
reduce stage are the matrix
elements Sa,g.	

• The computation is
straightforward.	

• What is the key?	

• What data does it need?

Sa,g =
wa · wg

||wa|| · ||wg||

Reducer

Means key is... ?

Means data it needs is... ?

Document Similarity:
Mapper

• It’s the mapper’s job to read in
the data and direct it to the
correct reducer by setting the
key	

• So mapper reads in (astro_01,
“abstract 1”). 	

• Which reducer needs that
information?

astro_01 abstract 1

astro_01 galaxy 1

genomics_03 abstract 1

Document Similarity:
Mapper

• Map phase:
“broadcast” (astro_01, “abstract
1”) to all key pairs that will need
astro_01	

• key: “astro_01 x”, x=astro_02,
astro_03, ...genomics_01,...	

• value: “astro_01 abstract 1”	

• (We’re just putting everything in
text strings here but we could
have keys and values which were
tuples...)

astro_01 abstract 1

Document Similarity:
Reducer

• Reducer: Collect all (say)
“astro_01 genomics_03” keys	

• Sort into elements for the two
documents	

• Calculate the result

Document Similarity:
Mapper

• Map: loop over documents	

• emit value for each document
pair

Document Similarity:
Reducer

• Reducer: 	

• Put values into appropriate
sparse vector	

• (Parsing is just because we’re
using text for everything, which
you really wouldn’t do)

Document Similarity:
Reducer

• Then the computation is easy.

Document Similarity:
But where did we get..

But we need as input: 	

•The wordcounts by document	

•The list of documents	

Where do they come from?

astro_01 {abstract:1, galaxy:1, supernova:1, star:1}

genomics_03 {abstract:1, gene:1, expression:1, dna:1}

Document Similarity:
But where did we get..

• Chains of Map-Reduce Jobs!	

• 1st pass - wordcounts,
document list	

• 2nd pass - similarity scores	

• Can do this programatically
(within main), or just by running
2 hadoop jobs...

Document Similarity:
But where did we get..

• Chains of Map-Reduce Jobs!	

• 1st pass - wordcounts	

• 2nd pass - similarity scores

A note on similarity

• Ignore the normalization for a
second	

• Just the dot products	

• What we’ve done is a sparse
matrix multiplication entirely in
Hadoop.

Si,j =wi · wj

S =WWT

Matrix multiplication

•cd ~/matmult!

• Reads in matrix name, rows,
columns	

• Hands on - fill in the map,
reduce.

A 0 52 1!
A 1 59 1!
A 10 86 1!
A 11 92 1!
A 12 39 1!
A 13 44 1!
A 14 57 1!
A 15 55 1!

...!
B 16 95 1!
B 26 73 1!
B 27 22 1

input/part-00000

One-D Diffusion

cd ~/diffuse  
make clean  
make!

• Implements a 1d diffusion PDE

One-D Diffusion

Inputs:	

•Pre-broken up domain	

•1d gaussian	

•constant diffusion - should
maintain Gaussianity	

What is the map?	

What is the reduce?

0: 0.0050365 0.00709477 0.01360237 ...!
1: 0.16004214 0.19533521 0.28114455 ...!
2: 0.84731875 0.89604445 0.96817042 ...!
3: 0.74742274 0.68483447 0.55549607 ...!
4: 0.10984817 0.08720647 0.05310277 ...

Questions?

