
Scientific Computing:
Objects

Erik Spence

SciNet HPC Consortium

16 January 2014

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 1 / 21



Today’s class

Today we will discuss the following topics:

Object-oriented programming.

Classes and objects in C++.

Class inheritance, functional polymorphism.

Assignment 2.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 2 / 21



Limits to structured programming

Structured programming is the methodology of breaking up a given
programming task into smaller bits using subroutines which access other
subroutines, until one has simple tasks to implement. This is a good
approach to solving one particular programming task.

Problems arise with this approach when there are multiple different tasks
being applied to the same data:

Each separate code needs to know about the data structure.

Leads to reinventing the wheel.

In these situations one would instead like to build ’components’ with
known properties and known interfaces to allow them to easily plug into
your program.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 3 / 21



Object-oriented programming
What is object-oriented programming (OOP)?

Structured programming: functions and data are accessible from
everywhere and by everyone.

OOP: functions and data are bundled together into a ’class’. The
implementation details are hidden.

OOP has a number of advantages:

Complexity can be hidden inside each class.

Separates the interface from the implementation.

Good reuse of components.

But be sure you know:

the computational cost of the operations.

what temporary variables are created.

At a low level, OOP may need to be broken for best performance.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 4 / 21



C++ class syntax

How is OOP accomplished in C++? Classes and objects!

Define a class, with its own internal variables and functions.

Declare variables (objects) to be of this class.

In this sense a class is like a customized variable, a self-contained package
that includes all the bits that you need to work on your data.

class classname {
private: // Things that can’t be accessed from outside the object.

int var1;

float var2;

public: // The things that can be accessed from outside.

void func1();

int func2(int x, int y);

};

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 5 / 21



Data hiding

Good implementations
hide the data details.

Each function or variable
is one of three types:

1 private: only functions
of the class have access.

2 public: accessible when
using the class.

3 protected: accessible
only to this class and
derived classes.

These are specified as
sections within the class.

class classname {
// Things that can’t be accessed from

// outside the object.

private:

int var1;

float var2;

// The things that can be accessed from

// outside the object.

public:

void func1();

int func2(int x, int y);

float ReturnVar2() {
return var2;

};

};

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 6 / 21



The StoneWt class
// MyStoneWt.cpp

#include <iostream>

class StoneWt {
private:

int stone; // whole stones

float lbs left; // fractional pounds

public:

void set stn(int stn, float lbs) {stone = stn; lbs left = lbs;};
void show stn() {std::cout << "The weight is " << stone

<< " stone and " << lbs left << " pounds." << std::endl;};
};

int main() {
StoneWt myweight;

myweight.set stn(10, 2.1);

myweight.show stn();}

ejspence@mycomp ~> g++ MyStoneWt.cpp -o MyStoneWt

ejspence@mycomp ~> ./MyStoneWt

The weight is 10 stone and 2.1 pounds.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 7 / 21

~
~


The StoneWt class
// MyStoneWt.cpp

#include <iostream>

class StoneWt {
private:

int stone; // whole stones

float lbs left; // fractional pounds

public:

void set stn(int stn, float lbs) {stone = stn; lbs left = lbs;};
void show stn() {std::cout << "The weight is " << stone

<< " stone and " << lbs left << " pounds." << std::endl;};
};

int main() {
StoneWt myweight;

myweight.set stn(10, 2.1);

myweight.show stn();}

ejspence@mycomp ~> g++ MyStoneWt.cpp -o MyStoneWt

ejspence@mycomp ~> ./MyStoneWt

The weight is 10 stone and 2.1 pounds.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 7 / 21

~
~


The StoneWt class
// MyStoneWt.cpp

#include <iostream>

class StoneWt {
private:

int stone; // whole stones

float lbs left; // fractional pounds

public:

void set stn(int stn, float lbs) {stone = stn; lbs left = lbs;};
void show stn() {std::cout << "The weight is " << stone

<< " stone and " << lbs left << " pounds." << std::endl;};
};

int main() {
StoneWt myweight;

myweight.set stn(10, 2.1);

myweight.show stn();}

ejspence@mycomp ~> g++ MyStoneWt.cpp -o MyStoneWt

ejspence@mycomp ~> ./MyStoneWt

The weight is 10 stone and 2.1 pounds.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 7 / 21

~
~


The StoneWt class, improved
// StoneWt.h

#ifndef STONEWT H

#define STONEWT H

class StoneWt {

private:

int stone; // whole stones

float lbs left; // frac. lbs

public:

// Set the weight, in stone.

void set stn(int stn,

float lbs);

// Print the weight.

void show stn();

};
#endif

Stolen from C++ Primer Plus

// StoneWt.cpp

#include <iostream>

#include "StoneWt.h"

void StoneWt::set stn(int stn, float lbs) {
stone = stn; lbs left = lbs;

};

void StoneWt::show stn() {
std::cout << "The weight is " <<

stone << " stone and " << lbs left << "

pounds." << std::endl;

};

// MyStoneWt.cpp

#include "StoneWt.h"

int main {
StoneWt myweight;

myweight.set stn(10, 2.1);

myweight.show stn();

}

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 8 / 21



Constructors
C++ allows the flexibility of instantiating your object in different ways.
This is accomplished through a ’contructor’:

Constructors are functions that have the same name as the class.

They perform whatever initialization of the object is necessary.

By having different numbers or types of arguments you can have
different constructors to do different initializations.

The constructors are listed in the public part of the class definition.

class classname {
...

public:

// Two constructors. Note that the constructors do not have return types.

classname(); // Default contructor.

classname(arguments);

int func1(int a);

};

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 9 / 21



Destructors

By default C++ will destroy a variable when it ’goes out of scope’. But
some objects require special instructions to be deleted correctly. This
function is called the ’destructor’.

The destructor is a function that has the same name as the class, but
begins with a ~.

The destructor must perform the deletion of whatever variables were
created with ’new’. Otherwise it needn’t be specified.

The destructor is listed in the public part of the class definition.

class classname {
...

public:

// Note that the destructor does not have a return type.

~classname();
};

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 10 / 21

~
~


The StoneWt class
// StoneWt.h

#ifndef STONEWT H

#define STONEWT H

class StoneWt {

private:

int stone; // whole stones

float lbs left; // frac. lbs

public:

StoneWt();

StoneWt(int stn, float lbs);

~StoneWt();
void set stn(int stn,

float lbs);

void show stn();

};
#endif

// StoneWt.cpp

#include <iostream>

#include "StoneWt.h"

void StoneWt::set stn(int stn, float lbs)

{stone = stn; lbs left = lbs;};

void StoneWt::show stn() {
std::cout << "The weight is " <<

stone << " stone and " << lbs left <<

" pounds." << std::endl;

};

StoneWt::StoneWt() // Default constructor.

{stone = 0; lbs left = 0.0;};

StoneWt::StoneWt(int stn, float lbs)

{stone = stn; lbs left = lbs;};

StoneWt::~StoneWt() {}; // Destructor.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 11 / 21

~
~


The StoneWt class, continued
// MyStoneWt.cpp

#include "StoneWt.h"

int main {
StoneWt myweight;

StoneWt *myweight2;

myweight2 = new StoneWt(4, 0.2);

myweight.show stn();

myweight.set stn(10, 2.1);

myweight.show stn();

myweight2 -> show stn();

}

ejspence@mycomp ~> g++ StoneWt.cpp -c -o StoneWt.o

ejspence@mycomp ~> g++ MyStoneWt.cpp -c -o MyStoneWt.o

ejspence@mycomp ~> g++ StoneWt.o MyStoneWt.o -o MyStoneWt

ejspence@mycomp ~> ./MyStoneWt

The weight is 0 stone and 0 pounds.

The weight is 10 stone and 2.1 pounds.

The weight is 4 stone and 0.2 pounds.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 12 / 21

~
~
~
~


The StoneWt class, continued
// MyStoneWt.cpp

#include "StoneWt.h"

int main {
StoneWt myweight;

StoneWt *myweight2;

myweight2 = new StoneWt(4, 0.2);

myweight.show stn();

myweight.set stn(10, 2.1);

myweight.show stn();

myweight2 -> show stn();

}

ejspence@mycomp ~> g++ StoneWt.cpp -c -o StoneWt.o

ejspence@mycomp ~> g++ MyStoneWt.cpp -c -o MyStoneWt.o

ejspence@mycomp ~> g++ StoneWt.o MyStoneWt.o -o MyStoneWt

ejspence@mycomp ~> ./MyStoneWt

The weight is 0 stone and 0 pounds.

The weight is 10 stone and 2.1 pounds.

The weight is 4 stone and 0.2 pounds.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 12 / 21

~
~
~
~


Class inheritance

Sometimes it makes sense to build classes that are based on the features
of other classes (modular programming!), rather than starting a new class
from scratch.

Fruit

Apple Pear Citrus

Orange Grapefruit Lemon

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 13 / 21



Class inheritance, continued

Derived classes are derived
from base classes.

The derived classes
automatically include the
base class’ public
members.

When the derived-class
constructor is invoked, the
base-class constructor is
also invoked. Hence the
option of specifying how
the base-class constructor
is to be invoked by the
derived-class constructor.

// Base class

class baseclass {
private:

...

public:

baseclass();

baseclass(int a);

...

};

// Derived class

class derivedclass : public baseclass {
private:

...

public:

derivedclass() : baseclass();

derivedclass(int a) : baseclass(a);

...

};

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 14 / 21



Class inheritance, example
// matrix.h

#ifndef MATRIX H

#define MATRIX H

class matrix {
// ’protected’ allows these

// variables to be directly

// accessed by derived classes.

protected:

int rows, cols;

double *elements;

public:

matrix(int r, int c);

~matrix();
int get rows();

int get cols();

void fill(double value);

};
#endif

// sqrmatrix.h

#ifndef SQRMATRIX H

#define SQRMATRIX H

#include <iostream>

#include "matrix.h"

class sqrmatrix : public matrix {
public:

sqrmatrix(int r,int c) : matrix(r,c) {
if (r != c) {
std::cerr<<"Not a square matrix.";

exit(1);

}};
double trace() {
double sum = 0.0;

for(int i = 0; i < rows; i++)

sum += elements[i * cols + i];

return sum;

};
};
#endif

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 15 / 21

~


Class inheritance, example

// Mysqrmatrix.cpp

#include <iostream>

#include "sqrmatrix.h"

int main {
sqrmatrix Q(5,5);

Q.fill(1.6); // Assume that this fills the matrix with elements.

std::cout << "Trace = " << Q.trace() << std::endl;

}

ejspence@mycomp ~> g++ matrix.cpp -c -o matrix.o

ejspence@mycomp ~> g++ Mysqrmatrix.cpp -c -o Mysqrmatrix.o

ejspence@mycomp ~> g++ Mysqrmatrix.o matrix.o -o Mysqrmatrix

ejspence@mycomp ~> ./Mysqrmatrix

Trace = 8

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 16 / 21

~
~
~
~


Polymorphism

Polymorphism refers to the use of a standard set of properties and
behaviours so that objects can be used interchangably. This is
implemented by the overloading and overriding of previously-existing
functionality.

Why bother?

Avoid the duplication of code.

Re-using function names for the same functionality allows a common
interface, and consistency of design.

This simplifies and structures the code.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 17 / 21



Polymorphism in class inheritance

Polymorphism naturally arises in class inheritance, since the derived class
shares commonality with the base class. The idea is as follows:

Use the base class as a framework for the derived class’ usage.

Override base class functions with new implementations of the
functions in the derived class definitions.

Simplifies and structures the code.

However, there is a twist, because baseclass pointers can point to
derivedclass objects (think about it):

However, which overloaded function will it run, the baseclass function
or the derivedclass function?

If you want it to run the derivedclass function, define the baseclass
version of the function with the virtual keyword.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 18 / 21



Poymorphic class inheritance, example
// matrix.h

#ifndef MATRIX H

#define MATRIX H

#include <iostream>

class matrix {
protected:

int rows, cols;

double *elements;

public:

matrix(int r, int c);

~matrix();
int get rows();

int get cols();

virtual void printstats() {
std::cout << "rows: " <<

rows << ", cols: " << cols

<< std::endl;

}
};
#endif

// sqrmatrix.h

#ifndef SQRMATRIX H

#define SQRMATRIX H

#include "matrix.h"

class sqrmatrix : public matrix {
public:

sqrmatrix(int r,int c) : matrix(r,c) {
if (r != c) {
std::cerr<<"Not a square matrix.";

exit(1);

}};
double trace();

void printstats() {
std::cout << "rows: " << rows <<

", cols: " << cols <<

", trace: " << trace() << std::endl;

}
};
#endif

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 19 / 21

~


Class inheritance, example

// Mysqrmatrix.cpp

#include "sqrmatrix.h"

int main {
matrix Q(2,3);

sqrmatrix R(5,5);

matrix *S = new sqrmatrix(6,6);

Q.fill(1.6); R.fill(1.6); S -> fill(1.6);

Q.printstats(); R.printstats(); S -> printstats();

}

ejspence@mycomp ~> make

ejspence@mycomp ~> ./Mysqrmatrix

rows: 2, cols: 3

rows: 5, cols: 5, trace: 8

rows: 6, cols: 6, trace: 9.6

If the matrix class printstats
function was not virtual then
“S -> printstats()” would print the
matrix class version.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 20 / 21

~
~


Assignment 2
On the class website is a file called Diffuse.cpp. This program evolves a
1D density field, and outputs the results to a text file. Assignment: put
this code under version control with git and modify it into a new,
modularized version:

Create a class for the field being evolved that contains the
functionality to allocate the field, perform a single time step,
constructor, destructor, etc.

Create a Makefile to compile this project.

Create a module containing the constants for the problem.

Create a module for the file output functions.

The orginal file should become just a ’driver’, containing main, that solves
the same problem as the original code. Please submit:

all source, header and make files for the new program.

the output of ’git log’ for your code development. We
expect to see several commits, and meaningful comments.

Erik Spence (SciNet HPC Consortium) Objects 16 January 2014 21 / 21


	Object-oriented programming
	C++ classes
	Class example
	Constructors
	Destructors

	Class inheritance
	Derived classes
	Functional polymorphism

	Assignment

