High Performance Computing (HPC) Introduction

Ontario Summer School on
High Performance Computing

Scott Northrup
SciNet HPC Consortium
Compute Canada

June 9th, 2014

Scilet

© ScilNet
© HPC Overview

© Parallel Computing
@ Amdahl’s law
@ Beating Amdahl's law
@ Load Balancing
@ Locality

@ HPC Hardware
@ Distributed Memory
@ Shared Memory
@ Hybrid Architectures
@ Heterogeneous Architectures
@ Software

© HPC Programming Models & Software

@ Serial Jobs : GNU Parallel Scifet

Acknowledgments

Contributing Material

@ SciNet Parallel Scientific Computing Course
- L. J. Dursi & R. V. Zon, SciNet

o Parallel Computing Models - D. McCaughan, SHARCNET

@ High Performance Computing - D. McCaughan, SHARCNET
@ HPC Architecture Overview - H. Merez, SHARCNET

@ Intro to HPC - T. Whitehead, SHARCNET

Scilet

© ScilNet

Scilet

.a consortium for High-Performance Computing consisting of

researchers at U. of T. and its associated hospitals.
One of 7 consortia

in Canada that

@) e provide HPC
resources to
Canadian academic
researchers and
their collaborators.

== -
Weslgrig ACEnct.
| cLume

HrCVL

Sciet
“ Scilet

’ compute ca\cu\

... home to the 1st and 2nd most powerful research

supercomputers in Canada (and a few more)

. where to take courses on computational topics, e.g.

@ Intro to SciNet

@ Linux Shell

e Scientific Programming (Modern FORTRAN / C++)
e GPGPU with CUDA

@ Intro to Research Computing with Python

e Scientific Computing Course (for credit for physics/astro
grads)

e Ontario HPC Summerschool
https://support.scinet.utoronto.ca/education/

user paratiien Talk

exchange , Togramming involve shell CUDA ShUrt Sclentlﬁc

P Q-D
g ostem
dlSCUSSan‘S . graph\csGTOUp 'O-D £ é 2 [departments

ntes i i
Shurscy k==)G INE
SESSIOHS computational Epart Ei meen"g — - = mg

Bssions SR R e S et o s e o

SciNet people

... technical analysts who can
work directly with you. + the people that make sure

+

Bertrand Brelier everything runs smoothly.

Jonathan Dursi @ Jaime Pinto

Scott Northrup @ Joseph Chen
Erik Spence e Jason Chong
Ramses van Zon e Ching-Hsing Yu
Daniel Gruner @ Neil Knecht
(CTO-software) @ Leslie Groer

°

Chris Loken (CTO)

Technical director: Prof. Richard Peltier

Business manager: Teresa Henriques
Project coordinator: Jillian Dempsey SCHilet

How to get an account

Any qualified researcher at a Canadian university can get a SciNet
account through the following process:

@ Register for a Compute Canada Database (CCDB) account

@ Non-faculty need a sponsor (supervisor's CCRI number),
who has to have a SciNet account already.

© Login to CCDB and apply for a SciNet account
(click Apply beside SciNet on the Consortium Accounts page)

@ Agree to the Acceptable Usage Policy
(e.g., don't share account, respect others, we can monitor
your jobs)

Scilet

Resources at SciNet

General Purpose Cluster (GPC)

—

3864 nodes with two 2.53GHuad—core Intel |
Xeon 5500 (Nehalem) x86-64 processors

16 GB RAM per node

16 threads per node

1:1 DDR (840 nodes) and 5:1 QDR (3024
nodes) Infiniband Interconnect

306 TFlops (261 HPL)

#16 on the June 2009 TOP500
supercomputer sites

@ #148 on the Nov 2013 list, #3 in Canada

Other Compute Resources at SciNet

Tightly Coupled System (TCS) Power 7 Linux Cluster (P7)

GPU Devel Nodes (ARC/Gravity)

TN
2

Storage Resources at SciNet

Disk space
@ 1.4 PB of storage in 1790 drives
e Two controllers each delivering 4-5 GB/s (r/w)
@ Shared file system GPFS on all systems

Storage space
@ HPSS: 5TB Tape-backed storage

Scilet

© HPC Overview

Scilet

Scientific High Performance Computing

What is it?
HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

Scilet

Scientific High Performance Computing

What is it?
HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

What does it involve?
@ hardware - pipelining, instruction sets, multi-processors,
inter-connects
@ algorithms - concurrency, efficiency, communications
@ software - parallel approaches, compilers, optimization,
libraries J

cSél?\let

CANADA

Scientific High Performance Computing

What is it?
HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

What does it involve?
@ hardware - pipelining, instruction sets, multi-processors,
inter-connects
@ algorithms - concurrency, efficiency, communications
@ software - parallel approaches, compilers, optimization,
libraries J

When do | need HPC?
@ My problem takes to long — more/faster computation

@ My problem is to big — more memory

let

J ecalcul
“ADA

@ My data is to big — more storage

Scientific High Performance Computing

Why is it necessary?
@ Modern experiments and observations yield vastly more data
to be processed than in the past.
@ As more computing resources become available, the bar for
cutting edge simulations is raised.
@ Science that could not have been done before becomes
tractable. |

cSél?\let

AAAAAA

Scientific High Performance Computing

Why is it necessary?
@ Modern experiments and observations yield vastly more data
to be processed than in the past.
@ As more computing resources become available, the bar for
cutting edge simulations is raised.
@ Science that could not have been done before becomes
tractable.

However

@ Advances in clock speeds, bigger and faster memory and
storage have been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

@ So modern HPC means more hardware, not faster hardware.

@ Thus parallel programming/computing is required.

Zlet

Analogy

HR Dilemma

@ Problem: job needs to get done faster

Scilet

Analogy

HR Dilemma

@ Problem: job needs to get done faster

e can't hire substantially faster people
@ can hire more people

cScfl?\let

AAAAAA

Analogy

HR Dilemma

@ Problem: job needs to get done faster
e can't hire substantially faster people
@ can hire more people

@ Solution:

o split work up between people (divide and conquer)
e requires rethinking the work flow process

e requires administration overhead

e eventually administration larger than actual work

Scilet

’ compute ca\cu\

Wait, what about Moore's Law?

CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 —
1,000,000,000 —

100,000,000 —;

10,000,000 —

1,000,000 —{

Transistor count

100,000 —{

10,000 —

2,300 —

BT e O Quad Core Itanium Tukwila

ec
"OWE"‘K' S
Htanium 2 with SMB cache @ /l
Gore 2auaa”,#10
anmze - BEPZ0
,A:oz
e ‘ eBaton gaom
pa Lot
Curve shows ‘Moore’s Law’: .
transistor count doubling o
every two years o
~®Pentium
e’
386 ¢~
20 o0
waoss
5080
4004 ¢ 4 008
1971 1980 1990 2000 2008

Date of introduction

(source: Transistor Count and Moore's Law - 2008.svg, by Wgsimon, wikipedia)

Sciet

) computeoca\cu\

W
CPU Transistor Counts 1971 -2008 & Moore’s Law

Moore's law

. describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore's law, wikipedia)

[RVVRVIVY)
#8088

10,000
% e

2,300 — sos g8

1971 1980 1990 2000 2008

Date of introduction

Scilet

(source: Transistor Count and Moore's Law - 2008.svg, by Wgsimon, wikipedia) ’ compute+ Ca\cu\

, W
CPU Transistor Counts 1971 -2008 & Moore’s Law

Moore's law

. describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore's law, wikipedia)

But. ..

@ Moores Law didn’t promise us clock speed.

@ More transistors but getting hard to push clockspeed up.

Power density is limiting factor.
@ So more cores at fixed clock speed.

—7—calcul
“ADA

© Parallel Computing
@ Amdahl’s law
@ Beating Amdahl's law
@ Load Balancing
@ Locality

Scilet

Parallel Computing

Thinking Parallel
The general idea is if one processor is good, many processors will
be better
o Parallel programming is not generally trivial
@ Tools for automated parallelism are either highly specialized or
absent

o serial algorithms/mathematics don't always work well in
parallel without modification

cSél?\let

AAAAAA

Parallel Computing

Thinking Parallel

The general idea is if one processor is good, many processors will
be better

o Parallel programming is not generally trivial

@ Tools for automated parallelism are either highly specialized or
absent

o serial algorithms/mathematics don't always work well in
parallel without modification

Parallel Programming
o its Necessary (serial performance has peaked)
e its Everywhere (cellphones, tablets, laptops, etc)
e its still increaseing (Sequoia 1.5 M cores, Tianhe-2 3.12M
cores) Jlet

Parallel Computing

NVIDIA Serial vs Parallel Computing

https://www.youtube.com /watch?v=XcolCeWlcss

Scilet

) compute ca\cul

Concurrency

@ Must have something to do
for all these cores.

e Find parts of the program
that can done
independently, and
therefore concurrently.

@ There must be many such
parts.

@ There order of execution
should not matter either.

(source: http://flickr.com/photos/splorp)

@ Data dependencies limit
concurrency.

cSc:I?\let

AAAAAA

Parameter study: best case scenario

@ Aim is to get results
from a model as a
parameter varies. p=1 n=2 n=3 nw=4

@ Can run the serial
program on each
processor at the same
time.

o Get “more” done.

Scilet

Throughput

@ How many tasks can you do per time unit?
throughput = H = —

@ Maximizing H means that you can do as much as possible.

@ Independent tasks: using P processorsincreases H by a

factor P
T = NT. T = NT,/P Sciv
H = 1/T1 H = P/Tl () comeits‘xg\!:u\

Scaling — Throughput

@ How a problem’s throughput scales as processor number
increases (“strong scaling”).

@ In this case, linear scaling:
H x P

@ This is Perfect scaling.

Tasks per unit time

O P N W A~ 1O N ©

1 2 3 4 5 6 7 8 Sﬁ?\let

AAAAAA

@ How a problem’s timing scales as processor number increases.

@ Measured by the time to do one unit. In this case, inverse
linear scaling:
Tx1/P

@ Again this is the ideal case, or “embarrassingly parallel”

lK
0.8

=
[7]
s
€ 06
5 ‘\
g o4
(0]
£
F 02
0

P Met

) compute ca\cu\

Scaling — Time

@ How a problem’s timing scales as processor number increases.

@ Measured by the time to do one unit. In this case, inverse
linear scaling:
Tx1/P

@ Again this is the ideal case, or “embarrassingly parallel”.

1
R
0
8
£
S
o}
o
Q
£
—
0.1 .
1 10

P Met

) compute ca\cu\

Scaling — Speedup

@ How much faster the problem is solved as processor number

increases.

@ Measured by the serial time divided by the parallel time

@ For embarrassingly parallel applications: Linear speed up.

Speed-up

Tserial

5= 7P

O P N W H» O O N

cScfl?\let

AAAAAA

Non-ideal cases

) Say we want to C Partition data)

integrate some
tabulated

experimental data.

@ Integration can be
split up, so different
regions are summed
by each processor.

region 1| |region 2| [region 3| [region 4

@ Non-ideal:

o First need to get
data to processor

° Ar.1d at the end Reduction
bring together all
the sums:

“reduction”

ch?\let

AAAAAA

Non-ideal cases

Parallel overhead <:> Partition data)

YeYaYaTa

region 1| |region 2| [region 3| [region 4

(I

Serial portion €> Reduction)

Parallel region =

Perfectly Parallel
(for large IN)

Suppose non-parallel part const: Ty

Scilet

Amdahl’s law

Speed-up (without parallel overhead):
NTl + Ts
S = §m
NT 4T,
or, calling f = Ts/(Ts + NT1) the serial fraction,
1

S=ira—n/p

16
14
12
10

o N A~ O 0

Scilet

2 4 6 8 10 12 14 16 (for f — 5%) ()compute.ca\cu\

AAAAAA

Amdahl’s law

Speed-up (without parallel overhead):
NT, + Ts
S=1Nm
? + TS

or, calling f = Ts/(Ts + NT1) the serial fraction,

f+Q@-r/pP f
16
14
12 Serial part dominates asymptotically.

10

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

Scilet

2 4 6 8 10 12 14 16 (for f — 5%) ()compute.ca\cu\

AAAAAA

o N A O

HPC Lesson #1

Always keep throughput in mind: if you have several runs, running
more of them at the same time on less processors per run is often
advantageous.

Scilet

) compute ca\cu\

Trying to beat Amdahl’s law #1

| 50
I N=1o0 ——
Scale up R
40 N=10,000 ——
a 35 N=100I,C?OC: —
eal
The larger N, the smaller 3 o
. - Q
the serial fraction: & 2]
10
5
0
f(P):— 5 10 15 20 25 30 35 40 45 50

Number of processors P

Scilet

) compute ca\cu\

Trying to beat Amdahl’s law #1

| 50
1 =100 7
Scale up R
401 N=10,000 —
a 35 N:lOOI,c?OCi E—
eal
The larger N, the smaller 3 o
. - Q
the serial fraction: & 2]
10
5
0
f(P):— 5 10 15 20 25 30 35 40 45 50

Number of processors P
Weak scaling: Increase problem size while increasing P
Timeyeak(P) = Time(N = n X P, P)

Good weak scaling means this time approaches a constant for large

cSél?\let

AAAAAA

Trying to beat Amdahl's law #1

| 50 — -
Scale up! I~
401 N=10,000 —
a 35 N:lOOI,C(‘)OCi E—
eal
The larger N, the smaller 3 o
. - Q
the serial fraction: & 2]
10
5
0
f(P):— 5 10 15 20 25 30 35 40 45 50

Number of processors P
Weak scaling: Increase problem size while increasing P

Timeyeak(P) = Time(N = n X P, P)

A9

Good weak scaling means this time approaches a constant for large P.

Gustafson's Law
Any large enough problem can be efficiently parallelized
(Efficiency—1).

Jlet

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NYaYata

region 1| |region 2| [region 3| [region 4

(WA

Serial portion é Reduction)

©

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large IN)

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NYaYata

region 1| |region 2| [region 3| [region 4

(WA

Serial portion é Reduction)

Rewrite
‘ SCiet

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large IN)

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NYaYata

region 1| |region 2| [region 3| [region 4

I

Serial portion =-

)
Y 2
Rewrite ()
‘ SCiet

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large N)

)

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NeYaYala

region 1| |region 2| [region 3| [region 4

I

Serial portion =-

)
Y Y
Rewrite ()
x log,(P)
SciNet

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large N)

)

HPC Lesson #2

Optimal Serial Algorithm for your problem may
not be the P —1 limit of your optimal
parallel algorithm.

Scilet

Synchronization

~

@ Most problems are not
purely concurrent.

® Some level of " Synchronizition
synchronization or exchange ——~ —— —————

of information is needed
between tasks.

- €
J\/

. / \\ / \
Synchronization

YV YV (1}

e While synchronizing,
nothing else happens:
increases Amdahl’s f.

NN\
N/

@ And synchronizations are
themselves costly. (>

Syn%hronizgtion v)
ScCiNet

Load Balancing

@ The division of calculations
among the processors may
not be equal.

Synchronization

))

@ Some processors would ——
already be done, while
others are still going.

o Effectively using less than
P processors: This reduces

Synchronization

the efficiency. (V) Vo) v o) v o)
@ Aim for load balanced

lgorithms. —
algorithms (v syn%hronizﬁtion v)

Load Balancing

Processor 0 1 2 N—-1

— 1

o =
‘_f = o ‘_ = -
d@ﬁ\let

’ computeoca\cu\

So far we neglected communication costs.

But communication costs are more expensive than
computation!
@ To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

Local data means less need for syncs, or smaller-scale syncs.

Local syncs can alleviate load balancing issues.

Scilet

’ compute ca\cu\

Locality

CPU SIZE
i 306
‘ Device Memory I ‘ L2 Cache |

1075 of eycles

~8 GBJs -

—
100,000°s of cycles
\ Disk |
you don’t want to know
‘ Massive Tape Storage I SPEED

Scilet

’ computeoca\cu\

Domain Decomposition

Domain
D e C O m P O S iti O n hu/://afi stanford.edu/aa24| heeps// uea.ac.uk

design/compaero.html Protein+Dynamics.+Structure+and+Function

¢ A very common approach to
parallelizing on distributed
memory computers

¢ Maintain Locality; need local
data mostly, this means only
surface data needs to be sent
between processes.

000 oo1 | 100 101

hetp: ita.utoronto.ca/~dubinski
Itreecode/node8.html

ivo.gsfc.nasa.go

[cubedsphere_comp.html

et

(, LOIHPUI@ . Ca\cul

Domain Decomposition

Guardcells Global Domain

* Works for parallel | | | | | | | | |
decomposition!

* Job | needs info on Job 2s Oth Job |
zone, Job 2 needs info on Job ;
I's last zone n4n3n2nl n

* Pad array with ‘guardcells’ and
fill them with the info from the
appropriate node by message o 1 2 3
passing or shared memory job 2

Example (PDE Domain decomposition)

wrong

Scilet

HPC Lesson #3

Parallel algorithm design is about finding as
much concurrency as possible, and arranging
it in a way that maximizes locality.

Scilet

) compute ca\cu\

@ HPC Hardware
@ Distributed Memory
@ Shared Memory
@ Hybrid Architectures
@ Heterogeneous Architectures
@ Software

Scilet

HPC Systems

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.

Rimax 8Nd Rpeak Values are in TFlops. For more details about other fields, check the TOPS00 description

Rpeak Values are for the normal CPU clocl

account,

Rank Site

National

Guangzhou
China.

ak Ridge National Laborate
United States

NNSA/LLNL

fence (AIC

DOE/S C/Argonne National Laboratory
United States

of Texas
United States

Forschungs:
Germany

trum Juelich (

NNSA/LLNL
United States

® 6 6 ©¢ 0 6 6 o ¢

Leibniz R
Germany

previous | 1

System

XTI K MitkyWay 2) - TH-IVB-FEP Cluster, Intel
eon E5-2692 12C 2.200GHz, TH Express-2, Intel

n Phi 3151P
NUDT

Titan - Cray XKT , Opteron 6274 L
Cray Gemini int NVIDIA K20x

Cray Inc.

2C 16C 1.60

Sequoia - Blu
GHz, Custom

inter
Fujitsu
Mira - BlueGene/Q, Pawer BQC L6C 1.60GHz
Custom

1BM
Piz Daint n E5-2670 &C

2 A NVIDIA K20x
Cray Inc

Stampede - PowerEdge C8:
2.700GHz, Infiniband FDR, Int
Dell

JUQUEEN - Blu
L

2, Cus

1BM

Vulcan - Blu
Custom Interct

1BM

SuperMuC - DataPlex DX3| n £5-2680

8C 2 70GHz, Infiniband FDR

Cores

3120000

560640

1572864

705024

786432

115084

462462

458752

303216

147456

K rate. For the effeciency of the systems you should take the Turbu CPU cl

Rmax
(TFloprs)

338627

175900

171732

10510.0

8586.6

62710

5168.1

5008.9

42033

2897.0

Rpeak
(TFlopis)

54902.4

271125

20132.7

112804

10066.3

77889

8520.1

5872.0

5033.2

31851

-

Power
(kW)

17808

8200

7890

12660

3945

2325

4510

2301

1072

3423

Net

Jte «calcul

CANADA

HPC Systems

Architectures

@ Clusters, or, distributed memory machines

e A bunch of servers linked together by a network
(“interconnect”).
e commodity x86 with gigk, Cray XK, IBM BGQ
e Symmetric Multiprocessor (SMP) machines, or, shared
memory machines
o These can all see the same memory, typically a limited number
of cores.
o IBM Pseries, Cray SMT, SGI Altix/UV
@ Vector machines.
e No longer dominant in HPC anymore.
e Cray, NEC
@ Accelerator (GPU, Cell, MIC, FPGA)

o Heterogeneous use of standard CPU’s with a specialized
accelerator.
o NVIDIA, AMD, Intel, Xilinx let

) ecaleul
“ADA

Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

o Take existing powerful
standalone computers

@ And network them

‘) compute «calcul
CANADA

Distributed Memory: Clusters

Each node is
independent!

Parallel code consists of
programs running on
separate computers,
communicating with

each other. CPU4
Could be entirely
different programs.
CPU3
CPU2

CPU1 .
SCiet

Distributed Memory: Clusters

Each node is
independent!

Parallel code consists of
programs running on
separate computers,
communicating with
each other. CPU4
Could be entirely
different programs.

Each node has own CPU3
memory!

Whenever it needs data
from another region, CPU2
requests it from that

CPU. CPU1 -
Scilet

. te « calcul
Usual model: “message passing” 0 Rt e

Clusters+Message Passing

Hardware:

Easy to build

(Harder to build well)
Can build larger and
larger clusters relatively

easily CPU4

Software:
Every communication
has to be hand-coded:

hard to program CPU3

CPU2

CPU1

Scilet

Task (function, control) Parallelism

Work to be done is decomposed across processors
@ e.g. divide and conquer
@ each processor responsible for some part of the algorithm
@ communication mechanism is significant

@ must be possible for different processors to be performing
different tasks

cSél?\let

AAAAAA

Cluster Communication Cost

Latency Bandwidth
GigE 10 ps 1 Gb/s
(10,000 ns) | (60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | (10 ns /double)

Processor speed: O(GFLOP) ~ few ns or less.

Scilet

ommunication Cost

Throughput in Mbps

7000

6000

5000

4000

3000

1000

InfiniBand RDMA
7.5 us latency

/

InfiniBand
wio cache effects

10 GigE
75 us

1 1,000,000
Message size in Bytes

Scilet

) compute ca\cu\

SciNet General Purpose Cluster (GPC)

—) . e
i —~— v . e -
<l A = W c
\ |- —— e
S
= ———

SciNet General Purpose Cluster (GPC)

o 3864 nodes with two 2.53GHz quad-core re Intel Xeon
5500 (Nehalem) x86-64 processors (30240 cores
total)

@ 16GB RAM per node

@ Gigabit ethernet network on all nodes for
management and boot

@ DDR and QDR InfiniBand network on the nodes for
job communication and file 1/0

@ 306 TFlops
@ #16 on the June 2009 TOP500 supercomputer sites
@ #148 on the Nov 2013 list, #3 in Canada

P

Shared Memory

One large bank of
memory, different
computing cores acting
on it. All ‘see’ same
data.

Core 3

Any coordination done

Core 2
through memory

Core 1

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts

on the data. cSﬁ?\let

Threads versus Processes

Wjdursi@gpe-f102n081:~

Fle Edit View Terminal Tabs Help
top - 17:27:34 up 2 days, 1:40, 1 user, load average: 1.81, 0.56, 0.20
Tatke: 142 total, 3 runnings 130 sleeping, © stopped, O zomte
Cpu(s. 95.9%us, 3.0%sy. 0.0%n1, 0.0%d, 0.0%a, 0.1%hi, 1.6%si, 0.6%st
e ASATIOTIR totat, 3778360k useq, 13630sbak trie, | Bsew outfers
ovap: ety ok uaed. ox fres, 226562k cached
3 APy e
Th d . 18121 ljdursi 25 0 89536 1076 848 R 779.0 0.0 0:29.01 diffusion-omp
reads: 17103 root 15 035300 2580 605 15.6 0.0 0:01.57 pbs mom
17102 reot 13 833300571 636 R 6.0 0.6 6100.48 pbocee
- - - 1 root 15 0 10344 740 6125 0.0 0.0 ©:01.45 init
Threads of execution within 2romt Rkt o.3 e s 55 5l6 ol :e6en myracions
3 root 34 19] [} es 0.0 0.0 ©:00.00 ksoftirqd/0
. Gret RT3 @ 8 85 a0 a8 0880 uatchaoyss
Stof KT 3 6 6 05 00 0.6 8006 maration
one process, with access to the :mx 5. ¢ ¢ oo snnmnn
Tret AT 3 6 8 65 a0 a6 00060 watchdogrt
Gret RT3 8 8 0% o 0.0 0:08.00 Marations2
Ssame memory etc. 9root 34 18 o © 05 0.0 0.0 0:00.00 ksortirgds2
10 root RT -5 © © 05 0.0 0.0 0:00.00 watchdog/2
1 fat Wb es 5 U5 62 G 6l (uiseie merationss

ljaursIGgpe
Ele Edt View Terminal Tabs Help

top - 17:33:58 up 2 days, 1:47, 1 user, load average: 0.86, 6.31, 0.17

9 running, 141 sleeping, © stopped, © zombie
Cpu(s):100.0%us, 0.0%sy, ©.0%ni, 0.6%id, 0.0%a, 6.0%hi, 0.0%si

0.0%st

Processes: Wem: 16411872k total, 2001172k used, 13610700k free, 356K buffars

Swap: ok total, oK used, Ok free, 2268568k cached

Independent tasks with their FErE—

18395 ljaursi 25
18397 ljaursi 25

i UnTINt O Amw tirmime
own memory and resources et b b G e e Alsnten Mendisacey
e o R s e aterusionapt
i S b G attrusionmnt
5
:
9

1 root 15 10344 740 612 S it
2 root RT - o 8 05 nigration/e
3 root 31 o 8 os ksoftirgd/o
4 root RT - o 8 05 watcndog/o
5 root RT -5 @ © 0F5 nigration/l
6 root 34 19 8 0 05 ©:00.01 ksortirgd/1

SCiNet
(’ com;:zxitNe; Dca\cul

Shared Memory: NUMA

Non-Uniform Memory Access

@ Each core typically has
some memory of its own.

@ Cores have cache too.

@ Keeping this memory
coherent is extremely
challenging.

Scilet

‘:c[lO] =5

@ The different levels of
memory imply multiple
copies of some regions

@ Multiple cores mean can
update unpredictably

Very expensive hardware

@ Hard to scale up to lots of
Processors.

Very simple to program!!

Data (Loop) Parallelism

Data is distributed across processors
@ easier to program, compiler optimization
@ code otherwise looks fairly sequential

@ benefits from minimal communication overhead

@ scale limitations

cScfl?\let

AAAAAA

Shared Memory Communication Cost

Latency Bandwidth
GigE 10 ps 1 Gb/s
(10,000 ns) | (60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | (10 ns /double)
NUMA 0.1 ps 10-20 Gb/s
(shared memory) | (100 ns) (4 ns /double)

Processor speed: O(GFLOP) ~ few ns or less.

Scilet

SciNet Tightly Coupled System (TCS)

SciNet Tightly Coupled System (TCS)

- ml‘““ A Ba

o 104 nodes with 16x 4.7GHz dual-core IBM Power6
processors (3328 cores total)

@ 128GB RAM per node

@ 4x DDR InfiniBand network on the nodes for job
communication and file 1/0

@ 62 TFlops

Hybrid Architectures

@ Use shared and distributed
memory together (i.e.
OpenMP with MPI).

@ Need to exploit multi-level
parallelism.
@ Homogeneous

e lIdentical multicore . .
machines linked together
with an interconnect.

e Many cores have modest i i

vector capabilities.
e Thread on-node, MPI for
off-node.

@ Heterogeneous
e Same as above, but with

an accelerator as well.
o GPU, Xeon Phi, FPGA. Met

Heterogeneous Computing

What is it?
@ Use different compute device(s) concurrently in the same
computation.

@ Commonly using a CPU with an accelator: GPU, Xeon Phi,
FPGA, ...

@ Example: Leverage CPUs for general computing components
and use GPU's for data parallel / FLOP intensive components.

@ Pros: Faster and cheaper ($/FLOP/Watt) computation

@ Cons: More complicated to program

Scilet

Heterogeneous Computing

Terminology
@ GPGPU : General Purpose Graphics Processing Unit
e HOST : CPU and its memory
e DEVICE : Accelerator (GPU/Phi) and its memory

u“w§

A

Host Device

GPU vs. CPUs

C

o

U

general purpose

task parallelism (diverse tasks)
maximize serial performance
large cache

multi-threaded (4-16)

some SIMD (SSE, AVX)

T

U

data parallelism (single task)
maximize throughput

small cache

super-threaded (500-2000+)
almost all SIMD

Control

>
=
c

ALU

>
=
c

ALU

[O B B B O B B |
()]
o
c

[n]
v
c

Scilet

) compute ca\cul

Theoretical peak (GFLOP/s)

5000 7]
4500 GeFarce GTX TITAN NVIDIA GPU SP
4000
3500
GeForce GTX 680
3000 -
2500
2000 -
GeForce GTX 580
1500 GeForce GTX 480
oo K20X . NVIDIA GPU DP
1000 GeForce GTX 280
GeForce 8800 GTX Tesla C2075 Haswell
500+ GeForce 7800 GTX) o, Intel DP
GeForce Séugruwnra Bloomfieid &MVM vy Bridge
o] WilamGgEo® FX 5800 crest Hama;ﬂﬁ%“’lc'oﬁ“w_w' ' i
2000 2002 2004 2006 2008 2010 2012 2014
Release date

http://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html

SChlet

) compute-ca\cu\

What is it?
@ Intel x86 based Accelerator/Co-processor
@ Many Integrated Cores (MIC) Architecture

@ Large number of low-powered, but low cost (computational
overhead, power, size, monetary cost) processors (pentiums).

Scilet

What is it?
@ Intel x86 based Accelerator/Co-processor
@ Many Integrated Cores (MIC) Architecture

@ Large number of low-powered, but low cost (computational
overhead, power, size, monetary cost) processors (pentiums).

Xeon Phi 5110P (Knights Corner)
@ 60 cores @ 1.053GHz
e 8 GB memory
e 4-way SMT (240 threads)
@ PCle Gen2 bus connectivity

@ Runs linux onboard

4

NOTE: Next Gen Knights Landing: 72-core native processor met

Heterogeneous Speedup

What kind of speedup can | expect?
@ ~1 TFLOPs per GPU vs. ~100 GFLOPs multi-core CPU
@ Ox - 50x reported

Scilet

Heterogeneous Speedup

What kind of speedup can | expect?
@ ~1 TFLOPs per GPU vs. ~100 GFLOPs multi-core CPU
@ Ox - 50x reported

Speedup depends on

@ problem structure

e need many identical independent calculations
o preferably sequential memory access

@ single vs. double precision (K20 3.52 TF SP vs 1.17 TF DP)
o data locality

@ level of intimacy with hardware

@ programming time investment

ScCifet

Accelerator Programming

Languages

e GPGPU Only

e OpenGL, DirectX (Graphics only)
o CUDA (NVIDIA proprietary)

e OpenCL (1.0, 1.1, 2.0)
@ OpenACC
e OpenMP 4.0

Scilet

Compute Canada GPU Resources

o Westgrid: Parallel
e 60 nodes (3x NVIDIA M2070)
@ SharcNet: Monk
o 54 nodes (2x NVIDIA M2070)
@ SciNet: Gravity, ARC
e 49 nodes (2x NVIDIA M2090)
o 8 nodes (2x NVIDIA M2070)
o 1 node (1x NVIDIA K20)
@ CalcuQuebec: Guillimin
e 50 nodes (2x NVIDIA K20)

SUPERCOMPUTING AT 1/10™ THE COST

AAAAAAA

Compute Canada Xeon Phi Resources

SciNet - ArcX
@ 1 node (1 x 8-core Sandybridge Xeon, 32GB)
@ 1 x Intel Xeon Phi 3120A (57 1.1 GHz cores and 6GB)
@ gsub -1 nodes=1:ppn=8,walltime=2:00:00 -q arcX -I
@ module load intel/14.0.1 intelmpi/4.1.2.040

Calcu Quebec - Guillimin
@ 50 nodes (2 x 8-core Intel Sandy Bridge Xeon, 64GB)
@ 2 x Intel Xeon Phi 5110P (60 1.053GHz cores and 8GB)

Scilet

HPC Lesson #4

The best approach to parallelizing your
problem will depend on both details of your
problem and of the hardware available.

Scilet

© HPC Programming Models & Software

Scilet

Program Structure

Structure of the problem

implement parallel solutions easy

dictates the ease with which we can J

casy

hard v

psrfact parallelism
independent calculations

pipeline parallelism
- overlap otherwise sequential work

syncheonous p&mﬂeham
- parallel work is well synchronized

asynchronous parallelism
-dependent calculations
-parallel work is loosely synchronized

Scilet

) compute ca\cu\

Parallel Granularity

Granularity

A measure of the amount of processing performed before
communication between processes is required.

Parallelism

@ Fine Grained
e constant communication necessary
@ best suited to shared memory environments
@ Coarse Grained
e significant computation performed before communication is
necessary
o ideally suited to message-passing environments
@ Perfect
@ no communication necessary

v
aaanet
(’ comeukthe; Ei\cu\

HPC Programming Models

Languages

@ serial
o C, C++, Fortran

o threaded (shared memory)
o OpenMP, pthreads

@ message passing (distributed memory)
o MPI, PGAS (UPC, Coarray Fortran)

@ accelerator (GPU, Cell, MIC, FPGA)
e CUDA, OpenCL, OpenACC

Scilet

HPC Systems

HPC Software Stack
@ Typically GNU/Linux

@ non-interactive batch processing using a queuing system
scheduler

@ software packages and versions usually available as “modules”
o Parallel filesystem (GPFS,Lustre)

Scilet

@ Serial Jobs : GNU Parallel Scifet

Serial Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

Scilet

Serial Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

@ You should never submit purely serial jobs to the GPC queue.

The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Scilet

Serial Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

@ You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node

scheduling of serial jobs would mean wasting 7 cpus.

@ Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that's good too.

Scilet

Serial Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

@ You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

@ Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that's good too.

@ Users need to utilize whole nodes by running at least 8 serial
runs at once.

cSél?\let

AAAAAA

Easy case: serial runs of equal duration

#PBS -1 nodes=1:ppn=8,walltime=1:00:00
cd $PBS_0_WORKDIR

(cd rundiril; ./dorunil)
(cd rundir2; ./dorun2)
(cd rundir3; ./dorun3)
(cd rundir4d; ./dorun4d)
(cd rundir5; ./dorun5)
(cd rundir6; ./dorun6é)
(cd rundir7; ./dorun7)
(cd rundir8; ./dorun8)
wait # or all runs get killed immediately

R R R

Scilet

) compute ca\cu\

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.
4 N [

N N\ [™)

Synchronization
(N)

Synchronization
o YET YRS

./ __J ___J

i ‘ SynEhroniition l

cSél?\let

AAAAAA

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.
s N

'a N N\ [™)

i . Synchronization |
e N N N ~N

Synchronization
o YET YRS

./ __J ___J
i ‘ SynEhroniition l

@ Want to keep all 8 cores on a node busy.

@ Or even 16 virtual cores on a node (HyperThreading).

o = GNU Parallel can do this 5&]‘?\]
et

GNU Parallel

@ GNU parallel is a a tool to run multiple (serial) jobs in parallel.
As parallel is used within a GPC job, we'll call these subjobs.

o It allows you to keep the processors on each 8-core node busy,
if you provide enough subjobs.

@ GNU Parallel can use multiple nodes as well.

On the GPC cluster:

@ GNU parallel is accessible on the GPC in the module
gnu-parallel, which you can load in your .bashrc.

$ module load gnu-parallel/20121022

@ There are currently (Nov 2012) three gnu-parallel modules on

the GPC. Although for compatibility gnu-parallel /2010 is the

default, we recommend using gnu-parallel /20121022. -
Sciflet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

@ The parameters are given as a command line argument.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

@ The parameters are given as a command line argument.

@ 8 subjobs of this code fit into the GPC compute nodes's
memory.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

@ The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

@ Each serial run on average takes ~ 2 hour.

Scilet

GNU Parallel Example

$

Scilet

GNU Parallel Example

$ cd $SCRATCH/example
$

Scilet

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel

$

cSCﬁ?\let

AAAA

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$

cSCﬁ?\let

AAAA

GNU Parallel Example

$
$
$
$

cd $SCRATCH/example

module load intel

icpc -03 -xhost mycode.cc -o myapp
cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out

Scilet

) compute ca\cu\

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out
$ cat > GPJob
#PBS -1 nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example

module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

Scilet

) compute ca\cu\

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out
$ cat > GPJob
#PBS -1 nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example

module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

Scilet

) compute ca\cu\

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out
$ cat > GPJob
#PBS -1 nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example

module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ 1s

GPJob GPJob.e2961985 GPJob.02961985 subjob.lst
myapp runO1 run02 run03

Scilet

) compute ca\cu\

GNU Parallel Example

DD@DD@DD

| | | | | |y
DDC]DC][:C]C]

C]=DDC]C]C]CJC]

17 hours
42% utilization

Scilet

GNU Parallel Example

) sy o) 5
- e C]C]DC]%C]
C]C]C]C]
(5 o [o D == DI:][:]
[:JCJ[:DC][:CJCJ
C]D=DC]C]C]CJC]
=
17 hours 10 hours
42% utilization 72% utilization
SCiNet

GNU Parallel Details

What else can it do?
@ Recover from crashes (joblog/resume options)

@ Span multiple nodes

Using GNU Parallel
e wiki.scinethpc.ca/wiki/index.php/User_Serial
o wiki.scinethpc.ca/wiki/images/7/7b/Tech-talk-gnu-
parallel.pdf
@ www.gnu.org/software/parallel
@ www.youtube.com/playlist?list=PL284C9FF24838BC6D1

@ O.Tange, GNU Parallel — The Command-Line Power Tool,
;login: The USENIX Magazine, February 2011:42-47.

SCHet

	SciNet
	HPC Overview
	Parallel Computing
	Amdahl's law
	Beating Amdahl's law
	Load Balancing
	Locality

	HPC Hardware
	Distributed Memory
	Shared Memory
	Hybrid Architectures
	Heterogeneous Architectures
	Software

	HPC Programming Models & Software
	Serial Jobs : GNU Parallel

