Intro to Research Computing with Python: Numerics

Erik Spence
SciNet HPC Consortium

6 November 2014

- compute \bullet calcul

Today's class

Today we will discuss the following topics:

- Numbers. How are they represented and why.
- How computers store different types of numbers.
- The kinds of errors can creep into your calculations, if you're not careful.
- compute \bullet calcul
compute \cdot calcu
CANADA

How do we represent quantities?

- We use numbers, of course.
- In grade school we are taught that numbers are organized in columns of digits. We learn the names of these columns.
- The numbers are understood as multiplying the digit in the column by the number that names the column.
$1034=(1 \times 1000)+(0 \times 100)+(3 \times 10)+(4 \times 1)$

Other ways to represent a quantity

- Instead of using 'tens' and 'hundreds', let's represent the columns by powers of what we will call the 'base'.
- Our normal way of representing numbers is 'base 10 ', also called decimal.

- Each column represents a power of ten, and the coefficient can be one of 10 numerals (0-9).
$1034=\left(1 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(4 \times 10^{0}\right)$

You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about base 7 (septenary)?

$1034=\left(1 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(4 \times 10^{0}\right)$

In base 7 the numerals have the range 0-6.

You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about base 7 (septenary)?

$1034=\left(1 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(4 \times 10^{0}\right)$ $1034=\left(3 \times 7^{3}\right)+\left(0 \times 7^{2}\right)+\left(0 \times 7^{1}\right)+\left(5 \times 7^{0}\right)$

In base 7 the numerals have the range 0-6.

Who cares?

The reason we care is because computers do not use base 10 to store their data. Computers use base 2 (binary). The numerals have the range $0-1$.

$1034=\left(1 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(4 \times 10^{0}\right)$

Who cares?

The reason we care is because computers do not use base 10 to store their data. Computers use base 2 (binary). The numerals have the range $0-1$.

$$
\begin{aligned}
1034= & \left(1 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(4 \times 10^{0}\right) \\
1034= & \left(1 \times 2^{10}\right)+\left(0 \times 2^{9}\right)+\left(0 \times 2^{8}\right)+\left(0 \times 2^{7}\right) \\
& +\left(0 \times 2^{6}\right)+\left(0 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\left(1 \times 2^{3}\right) \\
& +\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right)
\end{aligned}
$$

Why do computers use binary numbers?

Why use binary?

- Modern computers operate using circuits that have one of two states: 'on' or 'off'.
- This choice is related to the complexity and cost
 of building binary versus ternary circuitry.
- Binary numbers are like series of 'switches': each digit is either 'on' or 'off'.
- Each 'switch' in the number is called a 'bit'.

Why do computers use binary numbers?

Why use binary?

- Modern computers operate using circuits that have one of two states: 'on' or 'off'.
- This choice is related to the complexity and cost of building binary versus ternary circuitry.
- Binary numbers are like series of 'switches': each digit is either 'on' or 'off'.

Pretend that each finger on one of your hands represents one bit. Count to $31\left(2^{5}-1\right)$ on one hand in binary!

- Each 'switch' in the number is called a 'bit'.

Integers

- All integers are exactly representable.
- Different sizes of integer variables are available, depending on your hardware, OS, and programming language.
- For most languages, a typical integer is 32 bits, 1 bit for the sign.
- Finite range: can go from -2 $\mathbf{2}^{\mathbf{3 1}}$ to $\mathbf{2}^{\mathbf{3 1}} \mathbf{- 1}(-2,147,483,648$ to 2,147,483,647).
- Unsigned integers: $0 . . . \mathbf{2}^{\mathbf{3 2}} \mathbf{- 1}$.
- All operations (+, -, *) between representable integers are represented unless there is overflow.
$\uparrow_{\text {sign }}^{\square| || || || || || || || || || || || || | ~}$

A typical int $=32$ bits $=4$ bytes .

Long integers

- Long integers are like regular integers, just with a bigger memory size, usually 64 bits.
- And consequently a bigger range of numbers.
- One bit for sign.
- can go from - $\mathbf{2}^{63}$ to $\mathbf{2}^{63}-1$
- -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
- Unsigned long integers:
$0 . . .2^{64}-1$.
$\sum_{\text {sign }}^{4}$

A typical long int $=64$ bits $=8$ bytes.

Integers in Python

Python offers two default types of integers:

- "plain integers":
- All integers are plain by default unless they are too big.
- These are implemented using long integers in C. This gives them, depending on the system, at least 32 bits of precision.
- The maximum value can be found by checking the sys.maxint value.
- "long integers":
- Have infinite precision.
- Are invoked using the long(something) function, or by placing an "L" after the number.

```
>>> import sys; print sys.maxint
9223372036854775807
>>> a = 10; b = 10L
>>> type(a)
int
>>> type(b)
long
```


Fixed point numbers

How do we deal with decimal places?

- We could treat real numbers like integers: 0 ... INT_MAX, and only keep, say, the last two digits behind the decimal point.
- This is known as 'fixed point' numbers, since the decimal place is always in the same spot.
- It is often used for financial timeseries data, since they only use a finite number of decimal places.
- But this is terrible for scientific computing. Relative precision varies with magnitude; we need to be able to represent small and large numbers at the same time.
- If you want to deal with fixed point numbers, look into the "decimal" package.

Floating point numbers

- Analog of numbers in scientific notation.
- Inclusion of an exponent means the decimal point is

sign mantissa 'floating'.
- Again, one bit is dedicated to sign.

A typical single precision real $=32$ bits $=4$ bytes.
A typical double precision real $=64$ bits $=8$ bytes.

Floats in Python

Python offers two types of floating point numbers:

- "floating point numbers":
- Based on the C double type.
- You can specify the exponent by putting "e" in your number.
- Information about floats on your system can be found in sys.float_info.
- "complex numbers":
- Have a real and imaginary part, both of which are floats.
- Use z.real and z.imag to access individual parts.

```
>>> import sys; print sys.float_info
sys.floatinfo(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308,
min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15,
mant_dig=53, epsilon=2.2204460492503131e-16, radix=2, rounds=1)
>>> a = complex(1.,3.0); print a
(1+3j)
>>> b = 1.0 + 2.j; print b.imag
2.0
```


Special "numbers"

This format for storing floating point numbers comes from the IEEE 754 standard.

There's room in the format for the storing of a few special numbers.

- Signed infinities (+Inf, -lnf): result of overflow, or divide by zero.
- Signed zeros: signed underflow, or divide by +/-Inf.
- Not a Number (NaN): square root of a negative number, $0 / 0, \mathrm{Inf} / \mathrm{Inf}$, etc.
- The events which lead to these are usually errors, and can be made to cause exceptions.

Errors in floating point mathematics

There are errors inherent in using finite-length floating point variables.

- Except for numbers that fit exactly into a base two representation, assigning a real number to a floating point variable involves truncation.
- Think about how you represent $1 / 3$. Is it 0.3 ? 0.33 ? 0.333?
- You end up with an error of 1/2 ULP (Unit in Last Place).

```
In [1]: a = 0.1
In [2]: print a
Out[2]: 0.1
In [3]: a
Out[3]: 0.10000000000000001
```

In base two, 0.1 is an infinitely repeating fraction:
0.0001100110011001100110011...

Single precision: 1 part in $\mathbf{2}^{-\mathbf{2 4}} \sim 6 \mathrm{e}-8$.
Double precision: 1 part in $2^{-53} \sim 1 \mathrm{e}-16$.

Testing for equality

Never ever ever ever test for equality with floating point numbers!

- Because of rounding errors in floating point numbers, you don't know exactly what you're going to get.
- Instead, test to see if the difference is below some tolerance that is near epsilon.
- Testing for equality with integers is ok, however, because integers are exact.

```
```

In [4]: a = 0.1 * 0.1

```
```

In [4]: a = 0.1 * 0.1
In [5]: b = 0.01
In [5]: b = 0.01
In [6]: (a == b)
In [6]: (a == b)
Out[6]: False
Out[6]: False
In [7]: a
In [7]: a
Out[7]: 0.010000000000000002
Out[7]: 0.010000000000000002
In [8]: b
In [8]: b
Out[8]: 0.01
Out[8]: 0.01
In [9]: (abs(a - b) < 1e-15)
In [9]: (abs(a - b) < 1e-15)
Out[9]: True

```
```

Out[9]: True

```
```


Floating point mathematics

One must be very careful when doing floating point mathematics.

Fire up Python and try the examples on the right.

What went wrong?

```
In [10]: print 1.
Out[10]: 1.0
In [11]: print 1.e-18
Out[11]: 1e-18
In [12]: print (1. - 1.) + 1.e-18
In [13]: print (1. + 1.e-18) - 1.
In [14]: print 1. + 1.e-18
```


Floating point mathematics

One must be very careful when doing floating point mathematics.

Fire up Python and try the examples on the right.

What went wrong?

```
In [10]: print 1.
Out[10]: 1.0
In [11]: print 1.e-18
Out[11]: 1e-18
In [12]: print (1. - 1.) + 1.e-18
Out[12]: 1e-18
In [13]: print (1. + 1.e-18) - 1.
In [14]: print 1. + 1.e-18
```


Floating point mathematics

One must be very careful when doing floating point mathematics.

Fire up Python and try the examples on the right.

What went wrong?

```
In [10]: print 1.
Out[10]: 1.0
In [11]: print 1.e-18
Out[11]: 1e-18
In [12]: print (1. - 1.) + 1.e-18
Out[12]: 1e-18
In [13]: print (1. + 1.e-18) - 1.
Out[13]: 0.0
In [14]: print 1. + 1.e-18
```


Floating point mathematics

One must be very careful when doing floating point mathematics.

Fire up Python and try the examples on the right.

What went wrong?

```
In [10]: print 1.
Out[10]: 1.0
In [11]: print 1.e-18
Out[11]: 1e-18
In [12]: print (1. - 1.) + 1.e-18
Out[12]: 1e-18
In [13]: print (1. + 1.e-18) - 1.
Out[13]: 0.0
In [14]: print 1. + 1.e-18
Out[14]: 1.0
```


Machine epsilon

Let's do some addition, to demonstrate what went wrong.

- Problem: $1.0+0.001$
- Let's work in base 10.
- Let's assume that we only have a mantissa precision of 3 , and exponent precision of 2 .

1.00×10^{0} $+1.00 \times 10^{-3}$

 $1.00 \times 10^{0}$$+0.001 \times 10^{0}$
1.00×10^{0}

Machine epsilon

Let's do some addition, to demonstrate what went wrong.

- Problem: $1.0+0.001$
- Let's work in base 10.
- Let's assume that we only have a mantissa precision of 3 , and exponent precision of 2 .
- So what happened?
- Mantissa only has a precision of 3! The final answer is beyond

1.00×10^{0} $+1.00 \times 10^{-3}$

 $1.00 \times 10^{0}$$+0.001 \times 10^{0}$ 1.00×10^{0} the range of the mantissa!

Machine epsilon

Machine epsilon gives you the limits of the precision of the machine.

- Machine epsilon is defined to be the smallest \boldsymbol{x} such that $1+x \neq 1$.
- (or sometimes, the largest \boldsymbol{x} such that $1+x=1$.)
- Machine epsilon is named after the mathematical term for a small positive infinitesimal.

```
    In [15]: print 1.
Out[15]: 1.0
In [16]: print 1.e-18
Out[16]: 1e-18
In [17]: print (1. - 1.) + 1.e-18
Out[17]: 1e-18
In [18]: print (1. + 1.e-18) - 1.
Out[18]: 0.0
In [19]: print 1. + 1.e-18
Out[19]: 1.0
```


What's your epsilon?

You can find your approximate machine epsilon by repeatedly halving a number and testing it.

```
# myepsilon.py
def myepsilon():
    # Initialize our epsilon.
    eps = 1.0
    # Is (1 + eps) > 1?
    while ((1. + eps) > 1.):
        # If it is, divide and print it.
        eps = eps / 2.
    # Change the number of digits
    # printed so we can see them
    # all.
    print'%1.8e %1.18f, % \
        (eps, (1. + eps))
```

In [20]: import myepsilon
In [21]: myepsilon.myepsilon()
$1.77635684 \mathrm{e}-151.000000000000001776$
$8.88178420 \mathrm{e}-161.000000000000000888$
$4.44089210 \mathrm{e}-161.000000000000000444$
$2.22044605 \mathrm{e}-161.000000000000000222$
$1.11022302 \mathrm{e}-161.000000000000000000$
In [22]:
In [22]: import sys
In [23]: sys.float_info.epsilon 2.2204460492503131e-16

The epsilon is about $1 \mathrm{e}-16$ for my desktop, as expected for double precision.

The limits of precision: look out below!

Problems will occur when the result of a calculation spans more orders of magnitude than the inverse of machine epsilon.

Try the following:

- For the range of numbers between 0 and 2, repeatedly take square roots of the numbers, then repeatedly square the numbers.
- Plot the result, from 0..2.
- What should you get? What do you get?
- Loss of precision in early stages of a calculation causes problems.

```
# precision.py
from numpy import sqrt
def sqrts(x):
    # Make a copy of the argument.
    y = x
```

 \# Repeatedly sqrt, then square.
 for i in xrange(128):
 \(\mathrm{y}=\operatorname{sqrt}(\mathrm{y})\)
 for i in xrange(128):
 \(y=y * y\)
 return y
    ```
In [22]: import precision
In [23]: x = linspace(0., 2., 50)
In [24]: y = precision.sqrts(x)
In [25]: plot(x, y, 'o-')
```


Precision problem: uh oh

ompute \bullet calcul
CANADA

Precision problem: what happened?

```
# precision.py
from numpy import sqrt
def sqrts(x):
    y = x
    for i in xrange(128):
        y = sqrt(y)
    print'%1i %1.16f' % (i,y)
    for i in xrange(128):
        y = y * y
        print'%1i %1.16f' % (i,y)
    return y
```

If the argument is below 1.0, sqrt pushes it up to epsilon below 1.0.

If the argument is above 1.0, sqrt pulls it down to exactly 1.0 .

In [27]: sqrts(1.9)
01.3784048752090221
11.1740548859440185
1261.0000000000000000
1271.0000000000000000
01.0000000000000000
11.0000000000000000
21.0000000000000000
31.0000000000000000
1261.0000000000000000 1271.0000000000000000

Out [27]: 1.0

In [26]: sqrts(0.1)
00.3162277660168379
10.5623413251903491
1260.9999999999999999
1270.9999999999999999
00.9999999999999998
10.9999999999999996
20.9999999999999991
30.9999999999999982
1260.0000000000000000
1270.0000000000000000

Out [26]: 0.0

Beware: subtraction

Be very wary of subtracting very similar numbers.

- Problem: subtract 1.22 from 1.23.
- Assume that we only have a mantissa precision of 3 , and exponent precision of 2 .
- By performing this subtraction, we eliminate most of the information, and end up with 'catastrophic cancellation'.
- We go from 3 significant digits to 1 .
- Dangerous in intermediate results.

3 sig. digits

1 sig. digit

The same problem can occur when dividing large numbers.

Overflow

Overflow occurs when the result of a calculation exceeds the memory size of the variable.

- 8-bit integers have a range of -128 to 127.

```
In [27]: from numpy import int8
In [28]: a = int8(10)
In [29]: a
Out[29]: 10
In [30]: a.dtype
Out[30]: dtype('int8')
In [31]: type(a)
Out[31]: numpy.int8
In [32]: a * a
Out[32]: 100
In [33]: a * a * a
Out[33]: -24
In [34]:
```


Overflow

Overflow occurs when the result of a calculation exceeds the memory size of the variable.

- 8-bit integers have a range of -128 to 127.

```
In [27]: from numpy import int8
In [28]: a = int8(10)
In [29]: a
Out[29]: 10
In [30]: a.dtype
Out[30]: dtype('int8')
In [31]: type(a)
Out[31]: numpy.int8
In [32]: a * a
Out[32]: 100
In [33]: a * a * a
Out[33]: -24
In [34]: int8(1000)
Out[34]: -24
In [35]:
```


Overflow

Overflow occurs when the result of a calculation exceeds the memory size of the variable.

- 8-bit integers have a range of -128 to 127.
- When Python calculates a quantity, it up-casts all of the variables to the 'largest' variable type in the calculation.
- int are converted to long ints
- ints are converted to floats
- single precision floats are converted to double.
- Always be sure to use variables that are big enough for what you're doing.

| In [27]: from numpy import int8 |
| :---: |
| In [28]: $\mathrm{a}=$ int8(10) |
| In [29]: a |
| Out [29]: 10 |
| In [30]: a.dtype |
| Out [30]: dtype('int8') |
| In [31]: type(a) |
| Out [31]: numpy.int8 |
| In [32]: a * a |
| Out [32]: 100 |
| In [33]: a * a * a |
| Out [33]: -24 |
| In [34]: int8(1000) |
| Out [34]: -24 |
| In [35]: a * a * int16(a) |
| Out [35]: 1000 |
| In [36]: a * float (a) * int16(a) |
| Out[36]: 1000.0 |

In [27]: from numpy import int8
In [28]: $\mathrm{a}=\operatorname{int8}(10)$
In [29]: a
Out [29]: 10
In [30]: a.dtype
Out [30]: dtype('int8')
In [31]: type(a)
Out[31]: numpy.int8
In [32]: a * a
Out [32]: 100
In [33]: a * a * a
Out [33]: -24
In [34]: int8(1000)
Out [34]: -24
In [35]: a $*$ a $* \operatorname{int16(a)~}$
Out[35]: 1000
In [36]: a * float(a) * int16(a)
Out [36]: 1000.0

Underflow

An underflow error is the opposite of an overflow error: you are attempting to make a number which is smaller than the variable can hold.

- 32-bit floats integers have a range of -3.4 e 38 to +3.4 e 38
- An overflow error will result if you attempt to go beyond this range.
- An underflow error results if you try to go too small.

```
In [37]: from numpy import float32
In [38]:
In [38]: float32(-1e35)
Out[38]: -1e+35
In [39]: float32(-1e44)
Out[39]: -inf
In [40]:
In [40]: float32(1e-40)
Out[40]: 9.9999461e-41
In [41]: float32(1e-44)
Out[41]: 9.8090893e-45
In [42]: float32(1e-46)
Out[42]: 0.0
```


Summary: things to remember

- Integers are stored exactly.
- Floating point numbers are, in general, NOT stored exactly. Rounding error will cause the number to be slightly off.
- DO NOT test floating point numbers for equality. Instead test (abs(a - b) < cutoff).
- Know the approximate value of epsilon for the machine that you are using.
- Know the limits of your precision: if your calculations span as many orders of magnitude as the inverse of epsilon you're going to lose precision.
- Try not to subtract floating point numbers that are very close to one another. 'Catastrophic cancellation' leads to loss of precision.
- Be aware of overflow and underflow: use variable sizes that are appropriate for your problem.

Homework 1

(1) Write a program, called DecimalToTernary, which takes as its argument a base-10 integer, less than 6561, and returns an array which contains the argument's ternary (base-3) form.

```
In [37]:
In [37]: DecimalToTernary(149)
Out[37]: array([0, 0, 0, 1, 2, 1, 1, 2])
In [38]:
```

Do NOT use Numpy's "base_repr" function.

Homework 1, continued

(2 Write a program, called CalcOverflow, which, given an argument $\boldsymbol{m}>\mathbf{1 . 0}$, returns the minimum value of integer \boldsymbol{n} that generates an overflow error when calculating m^{n}.

Note that Python will throw a runtime error when it encounters an overflow; you must catch this exception:

```
In [40]: m = 5.
In [41]: m**500
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OverflowError: (34, 'Numerical result out of range')
In [42]: try:
    ...: m**500
    ...: except:
    ...: print "eeek!"
    ...:
eeek!
```

In [43]:

Homework 1, continued

(3) Write a program, called CalcUnderflow, which, given an argument $\boldsymbol{m}>\mathbf{1 . 0}$, returns the minimum value of integer \boldsymbol{p} that generates an underflow error when calculating $\boldsymbol{m}^{-\boldsymbol{p}}$.

```
In [40]: from mycode import CalcUnderflow
In [41]: CalcUnderflow(12.3)
Out[41]: 297
In [42]:
```

For those that are worried, the questions will get more interesting in the coming weeks.

