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Today’s class

Today we will discuss the following topics:

Numbers. How are they represented and why.

How computers store different types of numbers.

The kinds of errors can creep into your calculations, if you’re not
careful.
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How do we represent quantities?

We use numbers, of course.

In grade school we are
taught that numbers are
organized in columns of
digits. We learn the names
of these columns.

The numbers are understood
as multiplying the digit in
the column by the number
that names the column.

1034

thousands hundreds tens ones

1034 = (1× 1000)+ (0× 100)+ (3× 10)+ (4× 1)
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Other ways to represent a quantity

Instead of using ’tens’ and
’hundreds’, let’s represent
the columns by powers of
what we will call the ’base’.

Our normal way of
representing numbers is ’base
10’, also called decimal.

Each column represents a
power of ten, and the
coefficient can be one of 10
numerals (0-9).

1034

103 102 101 100

1034 = (1×103)+(0×102)+(3×101)+(4×100)
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You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about
base 7 (septenary)?

1034

103

(1000)
102

(100)
101

(10)
100

(1)

3005

73

(343)
72

(49)
71

(7)
70

(1)

1034 = (1×103)+(0×102)+(3×101)+(4×100)

1034 = (3× 73) + (0× 72) + (0× 71) + (5× 70)

In base 7 the numerals have the range 0-6.
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Who cares?
The reason we care is because computers do not use base 10 to store their
data. Computers use base 2 (binary). The numerals have the range 0-1.

1034

103

(1000)
102

(100)
101

(10)
100

(1)

10000001010

210

(1024)

29

(512)

28

(256)

27

(128)

26

(64)

25

(32)

24

(16)

23

(8)

22

(4)

21

(2)

20

(1)

1034 = (1×103)+(0×102)+(3×101)+(4×100)

1034 = (1× 210) + (0× 29) + (0× 28) + (0× 27)

+(0× 26) + (0× 25) + (0× 24) + (1× 23)

+(0× 22) + (1× 21) + (0× 20)
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Why do computers use binary numbers?

Why use binary?

Modern computers
operate using circuits that
have one of two states:
’on’ or ’off’.

This choice is related to
the complexity and cost
of building binary versus
ternary circuitry.

Binary numbers are like
series of ’switches’: each
digit is either ’on’ or ’off’.

Each ’switch’ in the
number is called a ’bit’.

10000001010

210

(1024)

29

(512)

28

(256)

27

(128)

26

(64)

25

(32)

24

(16)

23

(8)

22

(4)

21

(2)

20

(1)

Pretend that each finger on one of
your hands represents one bit. Count
to 31 (25 - 1) on one hand in binary!
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Integers

All integers are exactly
representable.

Different sizes of integer
variables are available,
depending on your hardware,
OS, and programming
language.

For most languages, a typical
integer is 32 bits, 1 bit for the
sign.

Finite range: can go from -231

to 231 − 1 (-2,147,483,648 to
2,147,483,647).

Unsigned integers: 0...232 − 1.

All operations (+, -, *)
between representable integers
are represented unless there is
overflow.

sign number

A typical int = 32 bits = 4 bytes.
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Long integers

Long integers are like
regular integers, just with
a bigger memory size,
usually 64 bits.

And consequently a
bigger range of numbers.

One bit for sign.

can go from -263 to 263 − 1

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

Unsigned long integers:
0...264 − 1.

sign number

A typical long int = 64 bits = 8 bytes.
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Integers in Python
Python offers two default types of integers:

”plain integers”:
I All integers are plain by default unless they are too big.
I These are implemented using long integers in C. This gives them,

depending on the system, at least 32 bits of precision.
I The maximum value can be found by checking the sys.maxint value.

”long integers”:
I Have infinite precision.
I Are invoked using the long(something) function, or by placing an ”L”

after the number.

>>> import sys; print sys.maxint

9223372036854775807

>>> a = 10; b = 10L

>>> type(a)

int

>>> type(b)

long
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Fixed point numbers

How do we deal with decimal places?

We could treat real numbers like integers: 0 ... INT MAX, and only
keep, say, the last two digits behind the decimal point.

This is known as ’fixed point’ numbers, since the decimal place is
always in the same spot.

It is often used for financial timeseries data, since they only use a
finite number of decimal places.

But this is terrible for scientific computing. Relative precision varies
with magnitude; we need to be able to represent small and large
numbers at the same time.

If you want to deal with fixed point numbers, look into the ”decimal”
package.
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Floating point numbers

Analog of numbers in
scientific notation.

Inclusion of an exponent
means the decimal point is
’floating’.

Again, one bit is dedicated to
sign.

−1.34× 10−7

sign mantissa base exponent

sign
(1 bit)

exponent
(8 bits)

mantissa
(23 bits)

A typical single precision real = 32 bits = 4 bytes.
A typical double precision real = 64 bits = 8 bytes.
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Floats in Python
Python offers two types of floating point numbers:

”floating point numbers”:
I Based on the C double type.
I You can specify the exponent by putting ”e” in your number.
I Information about floats on your system can be found in sys.float info.

”complex numbers”:
I Have a real and imaginary part, both of which are floats.
I Use z.real and z.imag to access individual parts.

>>> import sys; print sys.float info

sys.floatinfo(max=1.7976931348623157e+308, max exp=1024, max 10 exp=308,

min=2.2250738585072014e-308, min exp=-1021, min 10 exp=-307, dig=15,

mant dig=53, epsilon=2.2204460492503131e-16, radix=2, rounds=1)

>>> a = complex(1.,3.0); print a

(1+3j)

>>> b = 1.0 + 2.j; print b.imag

2.0
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Special “numbers”

This format for storing floating point numbers comes from the IEEE 754
standard.

There’s room in the format for the storing of a few special numbers.

Signed infinities (+Inf, -Inf): result of overflow, or divide by zero.

Signed zeros: signed underflow, or divide by +/-Inf.

Not a Number (NaN): square root of a negative number, 0/0, Inf/Inf,
etc.

The events which lead to these are usually errors, and can be made to
cause exceptions.
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Errors in floating point mathematics
There are errors inherent in using
finite-length floating point
variables.

Except for numbers that fit
exactly into a base two
representation, assigning a
real number to a floating
point variable involves
truncation.

Think about how you
represent 1/3. Is it 0.3?
0.33? 0.333?

You end up with an error of
1/2 ULP (Unit in Last
Place).

In [1]: a = 0.1

In [2]: print a

Out[2]: 0.1

In [3]: a

Out[3]: 0.10000000000000001

In base two, 0.1 is an infinitely
repeating fraction:
0.0001100110011001100110011...

Single precision: 1 part in
2−24 ∼ 6e-8.
Double precision: 1 part in
2−53 ∼ 1e-16.
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Testing for equality

Never ever ever ever test for
equality with floating point
numbers!

Because of rounding errors in
floating point numbers, you
don’t know exactly what
you’re going to get.

Instead, test to see if the
difference is below some
tolerance that is near epsilon.

Testing for equality with
integers is ok, however,
because integers are exact.

In [4]: a = 0.1 * 0.1

In [5]: b = 0.01

In [6]: (a == b)

Out[6]: False

In [7]: a

Out[7]: 0.010000000000000002

In [8]: b

Out[8]: 0.01

In [9]: (abs(a - b) < 1e-15)

Out[9]: True
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Floating point mathematics

One must be very careful when
doing floating point mathematics.

Fire up Python and try the
examples on the right.

What went wrong?

In [10]: print 1.

Out[10]: 1.0

In [11]: print 1.e-18

Out[11]: 1e-18

In [12]: print (1. - 1.) + 1.e-18

Out[12]: 1e-18

In [13]: print (1. + 1.e-18) - 1.

Out[13]: 0.0

In [14]: print 1. + 1.e-18

Out[14]: 1.0
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Machine epsilon

Let’s do some addition, to
demonstrate what went wrong.

Problem: 1.0 + 0.001

Let’s work in base 10.

Let’s assume that we only have
a mantissa precision of 3, and
exponent precision of 2.

So what happened?

Mantissa only has a precision of
3! The final answer is beyond
the range of the mantissa!

1.00× 100

+ 1.00× 10−3

1.00× 100

+ 0.001×100

1.00× 100
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Machine epsilon

Machine epsilon gives you the
limits of the precision of the
machine.

Machine epsilon is defined to
be the smallest x such that
1 + x 6= 1.

(or sometimes, the largest x
such that 1 + x = 1.)

Machine epsilon is named
after the mathematical term
for a small positive
infinitesimal.

In [15]: print 1.

Out[15]: 1.0

In [16]: print 1.e-18

Out[16]: 1e-18

In [17]: print (1. - 1.) + 1.e-18

Out[17]: 1e-18

In [18]: print (1. + 1.e-18) - 1.

Out[18]: 0.0

In [19]: print 1. + 1.e-18

Out[19]: 1.0
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What’s your epsilon?
You can find your approximate
machine epsilon by repeatedly
halving a number and testing it.

# myepsilon.py

def myepsilon():

# Initialize our epsilon.

eps = 1.0

# Is (1 + eps) > 1?

while ((1. + eps) > 1.):

# If it is, divide and print it.

eps = eps / 2.

# Change the number of digits

# printed so we can see them

# all.

print’%1.8e %1.18f’ % \
(eps, (1. + eps))

In [20]: import myepsilon

In [21]: myepsilon.myepsilon()

.

.

.

1.77635684e-15 1.000000000000001776

8.88178420e-16 1.000000000000000888

4.44089210e-16 1.000000000000000444

2.22044605e-16 1.000000000000000222

1.11022302e-16 1.000000000000000000

In [22]:

In [22]: import sys

In [23]: sys.float info.epsilon

2.2204460492503131e-16

The epsilon is about 1e-16 for my
desktop, as expected for double
precision.
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The limits of precision: look out below!
Problems will occur when the result of
a calculation spans more orders of
magnitude than the inverse of
machine epsilon.

Try the following:

For the range of numbers
between 0 and 2, repeatedly take
square roots of the numbers, then
repeatedly square the numbers.

Plot the result, from 0..2.

What should you get? What do
you get?

Loss of precision in early stages
of a calculation causes problems.

# precision.py

from numpy import sqrt

def sqrts(x):

# Make a copy of the argument.

y = x

# Repeatedly sqrt, then square.

for i in xrange(128):

y = sqrt(y)

for i in xrange(128):

y = y * y

return y

In [22]: import precision

In [23]: x = linspace(0., 2., 50)

In [24]: y = precision.sqrts(x)

In [25]: plot(x, y, ’o-’)
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Precision problem: uh oh

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Results from sqrts(x)
Correct value
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Precision problem: what happened?
# precision.py

from numpy import sqrt

def sqrts(x):

y = x

for i in xrange(128):

y = sqrt(y)

print’%1i %1.16f’ % (i,y)

for i in xrange(128):

y = y * y

print’%1i %1.16f’ % (i,y)

return y

If the argument is below
1.0, sqrt pushes it up to
epsilon below 1.0.

If the argument is above
1.0, sqrt pulls it down to
exactly 1.0.

In [26]: sqrts(0.1)

0 0.3162277660168379

1 0.5623413251903491

.

.

126 0.9999999999999999

127 0.9999999999999999

0 0.9999999999999998

1 0.9999999999999996

2 0.9999999999999991

3 0.9999999999999982

.

.

126 0.0000000000000000

127 0.0000000000000000

Out[26]: 0.0

In [27]: sqrts(1.9)

0 1.3784048752090221

1 1.1740548859440185

.

.

126 1.0000000000000000

127 1.0000000000000000

0 1.0000000000000000

1 1.0000000000000000

2 1.0000000000000000

3 1.0000000000000000

.

.

126 1.0000000000000000

127 1.0000000000000000

Out[27]: 1.0
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Beware: subtraction
Be very wary of subtracting very
similar numbers.

Problem: subtract 1.22 from
1.23.

Assume that we only have a
mantissa precision of 3, and
exponent precision of 2.

By performing this subtraction,
we eliminate most of the
information, and end up with
’catastrophic cancellation’.

We go from 3 significant digits
to 1.

Dangerous in intermediate
results.

1.23× 100

− 1.22× 100

1.00× 10−2

3 sig. digits

1 sig. digit

The same problem can occur
when dividing large numbers.
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Overflow
Overflow occurs when the result of a
calculation exceeds the memory size
of the variable.

8-bit integers have a range of
-128 to 127.

When Python calculates a
quantity, it up-casts all of the
variables to the ’largest’ variable
type in the calculation.

I int are converted to long ints
I ints are converted to floats
I single precision floats are

converted to double.

Always be sure to use variables
that are big enough for what
you’re doing.

In [27]: from numpy import int8

In [28]: a = int8(10)

In [29]: a

Out[29]: 10

In [30]: a.dtype

Out[30]: dtype(’int8’)

In [31]: type(a)

Out[31]: numpy.int8

In [32]: a * a

Out[32]: 100

In [33]: a * a * a

Out[33]: -24

In [34]:

int8(1000)

Out[34]: -24

In [35]: a * a * int16(a)

Out[35]: 1000

In [36]: a * float(a) * int16(a)

Out[36]: 1000.0
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Underflow

An underflow error is the opposite of
an overflow error: you are attempting
to make a number which is smaller
than the variable can hold.

32-bit floats integers have a
range of -3.4e38 to +3.4e38

An overflow error will result if
you attempt to go beyond this
range.

An underflow error results if you
try to go too small.

In [37]: from numpy import float32

In [38]:

In [38]: float32(-1e35)

Out[38]: -1e+35

In [39]: float32(-1e44)

Out[39]: -inf

In [40]:

In [40]: float32(1e-40)

Out[40]: 9.9999461e-41

In [41]: float32(1e-44)

Out[41]: 9.8090893e-45

In [42]: float32(1e-46)

Out[42]: 0.0
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Summary: things to remember
Integers are stored exactly.

Floating point numbers are, in general, NOT stored exactly.
Rounding error will cause the number to be slightly off.

DO NOT test floating point numbers for equality. Instead test
(abs(a - b) < cutoff).

Know the approximate value of epsilon for the machine that you are
using.

Know the limits of your precision: if your calculations span as many
orders of magnitude as the inverse of epsilon you’re going to lose
precision.

Try not to subtract floating point numbers that are very close to one
another. ’Catastrophic cancellation’ leads to loss of precision.

Be aware of overflow and underflow: use variable sizes that are
appropriate for your problem.
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Homework 1

1 Write a program, called DecimalToTernary, which takes as its
argument a base-10 integer, less than 6561, and returns an array
which contains the argument’s ternary (base-3) form.

In [37]:

In [37]: DecimalToTernary(149)

Out[37]: array([0, 0, 0, 1, 2, 1, 1, 2])

In [38]:

Do NOT use Numpy’s ”base repr” function.
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Homework 1, continued
2 Write a program, called CalcOverflow, which, given an argument

m > 1.0, returns the minimum value of integer n that generates an
overflow error when calculating mn.

Note that Python will throw a runtime error when it encounters an
overflow; you must catch this exception:

In [40]: m = 5.

In [41]: m**500

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

OverflowError: (34, ’Numerical result out of range’)

In [42]: try:

...: m**500

...: except:

...: print "eeek!"

...:

eeek!

In [43]:
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Homework 1, continued

3 Write a program, called CalcUnderflow, which, given an argument
m > 1.0, returns the minimum value of integer p that generates an
underflow error when calculating m−p.

In [40]: from mycode import CalcUnderflow

In [41]: CalcUnderflow(12.3)

Out[41]: 297

In [42]:

For those that are worried, the questions will get more interesting in the
coming weeks.

Erik Spence (SciNet HPC Consortium) Numerics 6 November 2014 30 / 30


	Numbers
	Bases
	Base 2

	Data types
	Integers
	Fixed point numbers
	Floating point numbers
	Special 'numbers'

	Errors and dangers
	Equality testing
	Machine epsilon
	Precision problems
	Overflow
	Underflow

	Summary and Homework

