
Parallel I/O

SciNet
www.scinet.utoronto.ca
University of Toronto

Toronto, Canada

February 27, 2013

Outline / Schedule

1 Introduction

2 File Systems and I/O

3 Data Management

4 Parallel I/O

5 MPI-IO

6 HDF5/NETCDF

Disk I/O

Common Uses

Checkpoint/Restart Files

Data Analysis

Data Organization

Time accurate and/or Optimization Runs

Batch and Data processing

Database

Disk I/O

Common Bottlenecks

Mechanical disks are slow!

System call overhead (open, close, read, write)

Shared file system (nfs, lustre, gpfs, etc)

HPC systems typically designed for high bandwidth (GB/s)
not IOPs

Uncoordinated independent accesses

Disk Access Rates over Time

Figure by R. Ross, Argonne National Laboratory, CScADS09

Memory/Storage Latency

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST’10

Definitions

IOPs

Input/Output Operations Per Second (read,write,open,close,seek)

I/O Bandwidth

Quantity you read/write (think network bandwidth)

Comparisons

Device Bandwidth (MB/s) per-node IOPs per-node

SATA HDD 100 100 100 100
SSD HDD 250 250 4000 4000
SciNet 5000 1.25 30000 7.5

SciNet Filesystem

File System

1,790 1TB SATA disk drives, for a total
of 1.4PB

Two DCS9900 couplets, each delivering:

4-5 GB/s read/write access (bandwidth)
30,000 IOPs max (open, close, seek, . . .)

Single GPFS file system on TCS and GPC

I/O goes over Gb ethernet network on GPC
(infiniband on TCS)

File system is parallel!

I/O Software Stack

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

File Locks

Most parallel file systems use locks to manage concurrent file
access

Files are broken up into lock units

Clients obtain locks on units that they will access before I/O
occurs

Enables caching on clients as well (as long as client has a
lock, it knows its cached data is valid)

Locks are reclaimed from clients when others desire access

Parallel File System

Optimal for large shared files.

Behaves poorly under many small reads and writes, high IOPs

Your use of it affects everybody!
(Different from case with CPU and RAM which are not
shared.)

How you read and write, your file format, the number of files
in a directory, and how often you ls, affects every user!

The file system is shared over the ethernet network on GPC:
Hammering the file system can hurt process communications.

File systems are not infinite!
Bandwidth, metadata, IOPs, number of files, space, . . .

Parallel File System

2 jobs doing simultaneous I/O can take much longer than
twice a single job duration due to disk contention and
directory locking.

SciNet: 500+ users doing I/O from 4000 nodes.
That’s a lot of sharing and contention!

I/O Best Practices

Make a plan

Make a plan for your data needs:

How much will you generate,
How much do you need to save,
And where will you keep it?

Note that /scratch is temporary storage for 3 months or less.

Options?

1 Save on your departmental/local server/workstation
(it is possible to transfer TBs per day on a gigabit link);

2 Apply for a project space allocation at next RAC call
(but space is very limited);

3 Archive data using HPSS (tape)

4 Change storage format.

I/O Best Practices

Monitor and control usage

Minimize use of filesystem commands like ls and du.

Regularly check your disk usage using
/scinet/gpc/bin/diskUsage.

Warning signs which should prompt careful consideration:

More than 100,000 files in your space
Average file size less than 100 MB

Monitor disk actions with top and strace

RAM is always faster than disk; think about using ramdisk.

Use gzip and tar to compress files to bundle many files into
one

Try gziping your data files. 30% not atypical!

Delete files that are no longer needed

Do ”housekeeping” (gzip, tar, delete) regularly.

I/O Best Practices

Do’s

Write binary format files
Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Don’ts

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory. (File
Locks)

Don’t write many small files (< 10MB).
System is optimized for large-block I/O.

1 Introduction

2 File Systems and I/O

3 Data Management

4 Parallel I/O

5 MPI-IO

6 HDF5/NETCDF

Data Management

Formats

ASCII

Binary

MetaData (XML)

Databases

Standard Library’s (HDF5,NetCDF)

ASCII

American Standard Code for Information Interchange

Pros

Human Readable

Portable (architecture independent)

Cons

Inefficient Storage

Expensive for Read/Write (conversions)

Native Binary

100100100

Pros

Efficient Storage (256 x floats @4bytes takes 1024 bytes)

Efficient Read/Write (native)

Cons

Have to know the format to read

Portability (Endianness)

ASCII vs. binary

Writing 128M doubles

Format /scratch (GPCS) /dev/shm (RAM) /tmp (disk)

ASCII 173s 174s 260s
Binary 6s 1s 20s

Syntax

Format C FORTRAN

ASCII fprintf() open(6,file=’test’,form=’formatted’)
write(6,*)

Binary fwrite() open(6,file=’test’,form=’unformatted’)
write(6)

Metadata

What is Metadata?

Data about Data

File System: size, location, date, owner, etc.

App Data: File format, version, iteration, etc.

Example: XML

<?xml version="1.0" encoding="UTF-8" ?>
<slice_data>

<format>UTF1000</format>
<verstion>6.8</version>

<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>

</slice_data>

Databases

Beyond flat files

Very powerful and flexible storage approach

Data organization and analysis can be greatly simplified

Enhanced performance over seek/sort depending on usage

Open Source Software

SQLite (serverless)
PostgreSQL
mySQL

“Standard” Formats

CGNS (CFD General Notation System)

IGES/STEP (CAD Geometry)

HDF5 (Hierarchical Data Format)

NetCDF (Network Common Data Format)

disciplineX version

1 Introduction

2 File Systems and I/O

3 Data Management

4 Parallel I/O

5 MPI-IO

6 HDF5/NETCDF

Common Ways of Doing Parallel I/O

Sequential I/O (only proc 0 Writes/Reads)

Pro

Trivially simple for small I/O
Some I/O libraries not parallel

Con

Bandwidth limited by rate one client can sustain
May not have enough memory on node to hold all data
Won’t scale (built in bottleneck)

Common Ways of Doing Parallel I/O

N files for N Processes

Pro

No interprocess communication or coordination necessary
Possibly better scaling than single sequential I/O

Con

As process counts increase, lots of (small) files, won’t scale
Data often must be post-processed into one file
Uncoordinated I/O may swamp file system (File LOCKS!)

Common Ways of Doing Parallel I/O

All Processes Access One File

Pro

Only one file
Data can be stored canonically, avoiding post-processing
Will scale if done correctly

Con

Uncoordinated I/O WILL swamp file system (File LOCKS!)
Requires more design and thought

Parallel I/O

What is Parallel I/O?

Multiple processes of a parallel program accessing data (reading or
writing) from a common file.

Parallel I/O

Why Parallel I/O?

Non-parallel I/O is simple but:

Poor performance (single process writes to one file)
Awkward and not interoperable with other tools (each process
writes a separate file)

Parallel I/O

Higher performance through collective and contiguous I/O
Single file (visualization, data management, storage, etc)
Works with file system not against it

Contiguous and Noncontiguous I/O

Contiguous I/O move from a single memory block into a single file block

Noncontiguous I/O has three forms:

Noncontiguous in memory, in file, or in both

Structured data leads naturally to noncontiguous I/O
(e.g. block decomposition)

Describing noncontiguous accesses with a single operation passes more
knowledge to I/O system

Independent and Collective I/O

Independent I/O operations specify only what a single process will do

calls obscure relationships between I/O on other processes

Many applications have phases of computation and I/O

During I/O phases, all processes read/write data
We can say they are collectively accessing storage

Collective I/O is coordinated access to storage by a group of processes

functions are called by all processes participating in I/O
Allows file system to know more about access as a whole, more
optimization in lower software layers, better performance

Parallel I/O

Available Approaches

MPI-IO: MPI-2 Language Standard

HDF (Hierarchical Data Format)

NetCDF (Network Common Data Format)

Adaptable IO System (ADIOS)

Actively developed (OLCF,SandiaNL,GeorgiaTech) and used
on largest HPC systems (Jaguar,Blue Gene/P)
External to the code XML file describing the various elements
Uses MPI-IO, can work with HDF/NetCDF

MPI-IO

MPI-IO

HDF5/NETCDF

	Introduction
	File Systems and I/O
	Data Management
	Parallel I/O
	MPI-IO
	HDF5/NETCDF

