Weak Gravitational Lensing Joachim Harnois-Déraps, SNUG Meeting, March 2011

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•
																		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																		•

WEAK LENSING BY A MASSIVE OBJECT DISTORTION OF THE SOURCE IMAGE

Why?

* 1-Detect distortions of (well understood?) source images
* 2-Extract statistical information on the gravitational lenses
* 3-Measure mass and growth of large scale structures
* 4-Constrain parameters from theoretical models of cosmology
* 5-Advantage: sensitive to both Dark matter and "normal" matter

How?

* Measure signal from data # Understand uncertainty from simulations: # 1-Simulate LSS with N-Body codes # 2-Construct density projections (tiling) # 3-Interpolate onto location of camera pixels # 4-Measure mass density and distortion matrix

cubep3m **Dark matter N-body (baryons are coming!)** 2-level grid, "pp" at the sub-grid openmp + mpi code known to scale up to 20,000 cores

Technicalities

* Run on TCS (currently have problems with fftw on GPC) # 8 nodes, 512 (hyper) cores * Takes 32.5 hours per "line of sight" * Code is roughly 70% efficient (catch: mpi fftw is not threaded) * Keep only 2D projections, delete particle catalogues to save space

