
C++11 — What can we already use from the
latest standard?

Ramses van Zon

SciNet HPC Consortium, University of Toronto

March 20, 2013

What is C++11?

Language enhancements

Library enhancements

References

What is C++11?

I There is a C++ standards committee.

I The first C++ standard was accepted in 1998: C++98.

I An updated standard was accepted in 2003: C++03.

I Proposals for language extensions in 2005: TR1.

I New standard was finished in 2011: C++11

Some C++11 features already existed as compiler-specific
extentions, but no compiler is fully C++11 compliant yet.

Aim of this talk:
Show some of the most commonly implemented C++11 features.

(will assume reasonable C++03 knowledge)

Tested C++11 compilers

I GNU’s g++ version 4.7.2 (September, 2012)

I Intel’s icpc version 13.1 (February, 2013)

(as these are available on SciNet’s GPC and ARC)

List of supported C++11 language features can be found at

http://wiki.apache.org/stdcxx/C++0xCompilerSupport

Haven’t found such a nice list for C++ library enhancements.

http://wiki.apache.org/stdcxx/C++0xCompilerSupport

How to compile

g++

$ g++ -std=c++11 -pthread

icpc

$ icpc -std=c++11 -pthread

Not tested here, but for your information, the IBM compilers have
a c++11 flags too:

$ xlc++ -qlanglvl=extended0x

xlc++ not tested much because in aix it lacks many new libraries,
and in linux is harder to make work with newer gcc’s.

Language enhancements

I With the C++11 standard, core C++ has changed
substantially

I Different pieces of the language fit together better

I Many new features.

We will look at the language extensions first, and consider the
library extensions after.

Language enhancements

In particular let’s consider:

I Helpful language extensions

I Static asserts

I Range-based for

I Initialization

I Move semantics

I Lambda expressions

Helpful language extensions

auto Placeholder for a type that can be deduced:

auto i = 4; //same as "int i = 4"
auto d = 0.4; //same as "double d = 0.4"
auto p = std::make pair(i,d);
//std::pair<int,double> p = std::make pair(i,d);

decltype Type of a given expression:

decltype(std::make pair(i,d)) p;
p = std::make pair(i,d);

Useful with new function declaration syntax for
deduced return types:

template <class A, class B>
auto add(const A&a, const B&b) -> decltype(a+b)
{

return a+b;
}

Helpful language extensions

extern template Allows templates to be instantiated in only one
translational unit, not in every unit that uses it.

template <typename T> class C {
...

};
template class C<int>; //explicit instantiation

elsewhere
template <typename T> class C {

...
};
extern template class C<int>;//no instantiation

long long Finally in the standard: at least 64bit.
standard still ambiguous about the #bits in int s,
but in <cstdint> there now are int8 t int16 t,

int32 t, int64 t, uint8 t,

nullptr always a pointer, unlike 0, which is an int first.

Helpful language extensions

Right Angle Brackets So we can just write

std::vector<std::pair<int,double>> p;

OOP stuff: Delegating Constructors, Defaulted And Deleted
Functions, override and final

Static asserts

With assert we can test for conditions at runtime.

static assert does the same but at compile time.

static assert(4!=5, "four is not five");

If the condition is not fulfilled, the compiler will throw an error and
print the message give to static assert

Range-based for loops
For containers, the standard loop is using iterators:

std::vector v(10);
for (std::vector::iterator i = v.begin();

i != v.end();
i++)
//something with *i

Now we can do:

std::vector v(10);
for (auto i: v)

// something with i

This passes a copy by default, so modifying i does not change v.
To be able to do that, get a reference:

std::vector v(10);
for (auto & i: v)

// something with i

I Not for dynamic arrays.
I Does not cooperate with openmp.

Initialization
I C++03 has various ways to initialize (arrays of) objects.
I Inherited from C:

int i = 7;
float f[3] = {0.1,0.2,0.3};
struct R {

int i;
std::string s;

}
R r = {5,"Bill"};

I Using constructor:

struct R {
int i;
std::string s;
R(int ii,const std::string &ss):i(ii),s(ss){}

}
R r(5,"Bill");

I Explicit assignment, e.g. std::vector and new ed arrays.
I C++11 make this more uniform.

Initialization

I Uniform initialization using curly brackets {}
I Constructor or struct can both use

R r {5,"Bill"};

Curly brackets call the appropriate constructor if it exists.

I Can use with new too:

R* r = new R{5,"Bill"};

I Can use for arrays too:

R* r = new R[3] {{1,"Bill"},{2,"John"},{3,"Jane"}};

I And for containers:

std::vector<R> r {{1,"Bill"},{2,"John"},{3,"Jane"}};

(not supported by icpc)

Initializer lists

Consider this last case again:

std::vector<R> r {{1,"Bill"},{2,"John"},{3,"Jane"}};

Which constructor would this call?
In fact, this construction uses a new type of list: initializer list:

I Classes need a constructor that expects an initializer list for
this to work. All STL containers should have this.

I If they do, these constructors will be called preferably over
others when using curly brackets.

I Need to use the old () constructors if that’s not wanted, e.g.

std::vector<int > r(9);

gives a vector of 9 elements, wheras

std::vector<int > r{9};

gives a vector with 1 elements, whose value is 9.

Move semantics

I In C++03, assigning a temporary object to a named object:

class C;
C get a C() {

return C(1,0);
}
C c;
c = get a C();

means a copy of the temporary has to be made.

I But what we really want is for that temporary to become the
named object.

I In other words, we want to move the temporary into the
variable c.

I This would be different from copying, because any memory in
the object to be moved would not need to be reallocated,
moved and freed.

I By the way....

Move semantics

I In C++03, assigning a temporary object to a named object:

class C;
C get a C() {

return C(1,0);
}
C c;
c = get a C();

means a copy of the temporary has to be made.

I But what we really want is for that temporary to become the
named object.

I In other words, we want to move the temporary into the
variable c.

I This would be different from copying, because any memory in
the object to be moved would not need to be reallocated,
moved and freed.

I By the way....

Move semantics

I In C++03, assigning a temporary object to a named object:

class C;
C get a C() {

return {1,0}
}
C c;
c = get a C();

means a copy of the temporary has to be made.

I But what we really want is for that temporary to become the
named object.

I In other words, we want to move the temporary into the
variable c.

I This would be different from copying, because any memory in
the object to be moved would not need to be reallocated,
moved and freed.

I By the way....

Move semantics

I Logically can only move things that are temporary, or
“rvalues”.

I rvalues are expressions that can only occur at the right hand
side of an assignment (barring technicalities).

I C++11 can handle references to rvalues. The reference to an
rvalue of type T is denoted by T&&.

I By defining a constructor and an assignment operator that
take an rvalue reference (in addition to the usual ones), a
class can implement move semantics.

I These should put the internal state of rhs into the lhs and
modify the rhs to become ’deletable’ without side effects for
the lhs (ie., set all pointers to nullptr).

I Most STL classes should now be doing this.

Example
struct X {

int * x;
X(): x{nullptr} {}
~X() { delete x; }
X(int i): x{new int {i}} {}
X(const X&o): x{new int {*o.x}} {}
X(X&&o): x{o.x} { o.x = nullptr; }
X& operator= (const X&o) {

if (this != &o)
x = new int {*o.x};

return *this;
}
X& operator= (X&&o) {

if (this != &o) {
x = new int {*o.x};
o.x = nullptr;

}
return *this;

}
};

Example

X get an X() {
return {7};

}
int main() {

X a(5);
X b(std::move(a));
X c;
c = std::move(b);
X d;
d = get an x();

}

Lambda expressions

I Sometimes you suddenly need a part of your code to become
function.

I Example:

auto a = new double [5] {2.0,1.1,1.2,1.3,1.4};
double sum {0.0};
for (double * iter=a; iter!=a+5; iter++)

sum += *iter;

To:

auto a = new double [5] {2.0,1.1,1.2,1.3,1.4};
double sum {0.0};
std::for each(a,a+5, ????);

(std::for each is in <algorithm>)

I ???? should be a function to be called for each.

I Lambda’s are functions defined on the spot.

Lambda expressions

I General strucure:

[capture](arguments) -> return-type
{

body
}

I Like a new style function without a name and without a
return type.

I If return type is omited, it is actually deduced from the body’s
return statement.

I The capture is a list of variables that should be shared with
the function’s body. These do not have to be global variables!

I So our code can become:

auto a = new double [5] {2.0,1.1,1.2,1.3,1.4};
double sum {0.0};
for each(a,a+5, [&sum](double x){ sum+=x; });

I Note the ampersand in the capture.

Library enhancements

I A lot of functionality has been added to C++11 in the form
of standard libraries. This includes stuff that was in TR1.

I Many new features as well. Will pick a few.

I Intel compiler depends on underlying g++ for many of these.
Need both g++ 4.7.2 and icpc 13.1 for some of this to work.

Library enhancements

In particular let’s consider:

I Smart pointers

I Random numbers

I Timing routines

I Threading

Smart pointers
I Smart pointers help avoid memory issues like

1. Not deallocating new-ed memory because delete is missing.
2. Not deallocating new-ed memory because of an exception.
3. Passing a pointer to a class that may use it after its lifetime.
4. Or that may try to delete it.

I Three useful types:
1. std::unique ptr

A pointer wrapper that will deallocate the memory associated
with the pointer when it goes out of scope. Cannot be copied.
Can use * and ->.

2. std::shared ptr

A pointer wrapper that will deallocate the memory associated
when there are no more reference to it. Internally increases a
reference counter when copied.

3. std::weak ptr

Like std::shared ptr but without increasing the reference
count. Sometimes useful, but rare.

4. std::auto ptr

Deprecated.
I In the header file <memory>.

Random numbers

I The header file <random> has random number generators

I Unlike previous compiler RNGs, these are actually good.

I They’re extensible too.

I The random library separates the random number generator
from the distribution that numbers are to be drawn from.

#include <random>
#include <functional>
int main()
{

std::uniform int distribution<int> distribution(0,99);
std::mt19937 engine; // Mersenne twister MT19937
auto generator = std::bind(distribution, engine);
engine.seed(13);
int random1 = generator();
int random2 = distribution(engine);

}

Timing routines

I The header file <chrono> has standard timing routines.

I Comes with a large number of templates to describe time
units, durations, etc.

Example

#include <chrono>
int main()
{

using namespace std::chrono;
for (int i = 0; i < 10; i++) {

auto tick = steady clock::now();
// do something
auto tock =steady clock::now();
float time = duration<float>(tock-tick).count();
std::cout << time << "s" << std::endl;

}
}

Multi-threading

I Threads are part of the standard i.e. not an added on library.

I Atomic data type in the standard.

I The header file <thread> implements the thread class.

I The header file <future> implements asynchronous stuff and
references to not-yet computed values.

I Very reminiscent of pthreads, but much easier to program for
simple cases, while maintaining flexability.

I Too large a subject to properly explain here, let’s look at some
examples.

Multi-threading example 1

#include <iostream>
#include <thread>
void threadfunction() {

std::cout << "Hello from thread!\n";
}
int main() {

std::thread th(&threadfunction);
std::cout << "Hello world!\n";
th.join();
return 0;

}

Multi-threading example 2
#include <iostream>
#include <vector>
#include <thread>
int main()
{

std::vector<int> a {1,2,3};
std::cout << "a.size() = " << a.size() << std::endl;
std::thread th1([]() {

std::cout << "Hello from thread!" << std::endl;
});
std::thread th2(&std::vector<int>::clear,std::ref(a));
std::cout << "a.size() = " << a.size() << std::endl;
std::cout << "Hello world!" << std::endl;
th1.join();
th2.join();
std::cout << "a.size() = " << a.size() << std::endl;
return 0;

}

Note: for icpc, this lambda in a thread only works when
wrapped in a std::function<void(void)>.

References

http://wiki.apache.org/stdcxx/C++0xCompilerSupport

http://www.cplusplus.com/reference

http://en.cppreference.com/w/

http://wiki.apache.org/stdcxx/C++0xCompilerSupport
http://www.cplusplus.com/reference
http://en.cppreference.com/w/

	What is C++11?
	Language enhancements
	Library enhancements
	References

