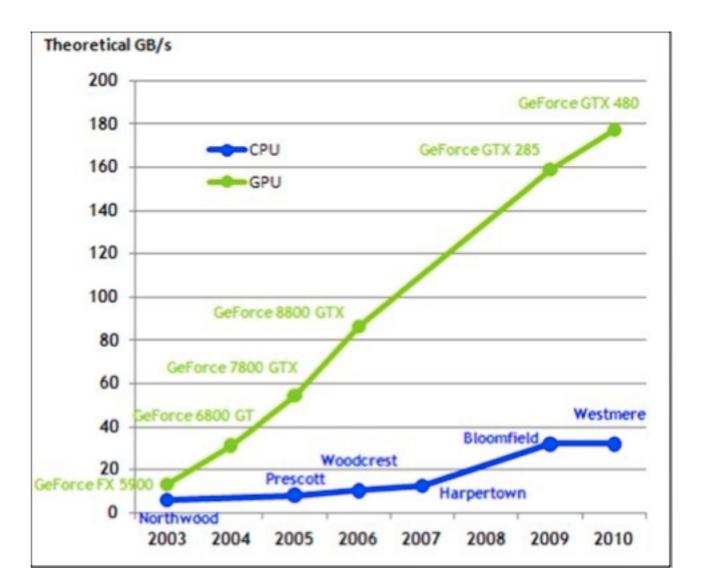
Intro to GPGPU

Your graphics card is probably faster than your computer.

- Graphics
 performance has
 grown by leaps and
 bounds
- Driven by gamers



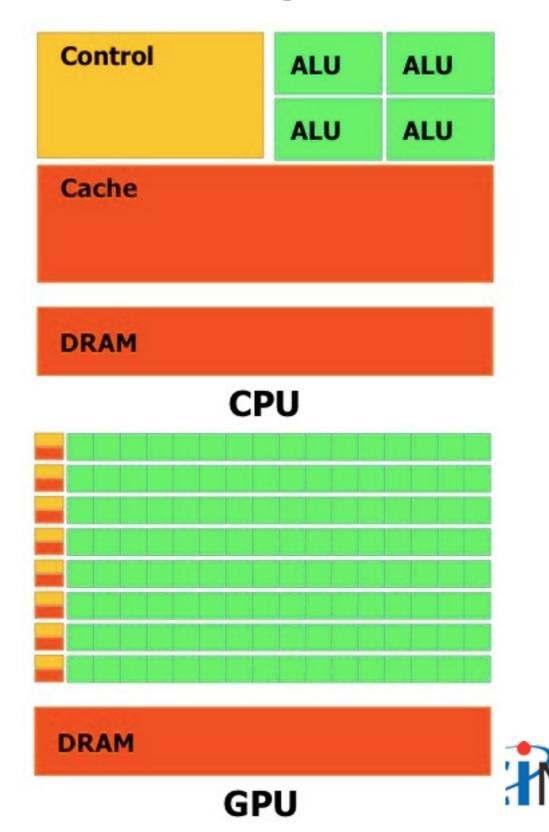
...but it's not magic

- CPU very flexible, easy to program
- GPU almost all transistors go to cores and mathematics.

Control		ALU	ALU
		ALU	ALU
Cache			
DRAM			
	CPU	J	
DRAM			
	GPU	J	

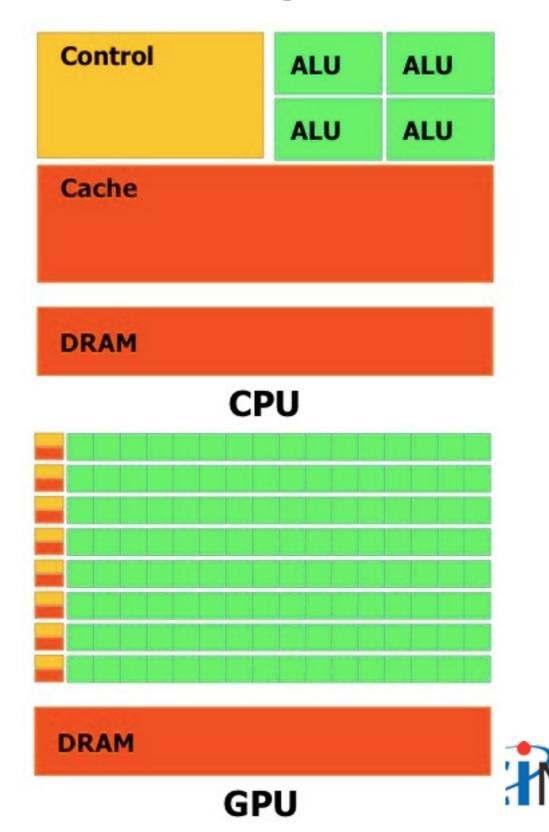
...but it's not magic

- All cores in a "multiprocessor unit" have same control, cache
- Act in lock step
- Do same computations on different data
- "Data parallel"



...but it's not magic

- All cores in a "multiprocessor unit" have same control, cache
- Act in lock step
- Do same computations on different data
- "Data parallel"

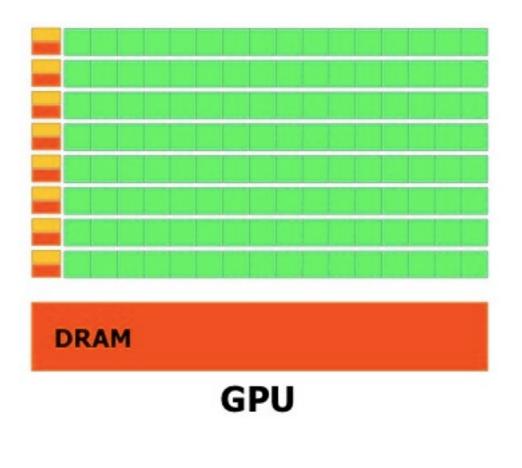


lf it works, it's great..

• GPU: ~448

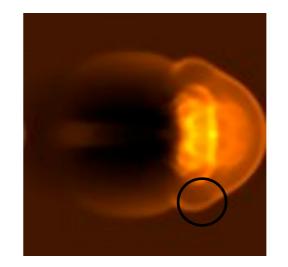
compute cores, into ~14 streaming multiprocessors (SM)

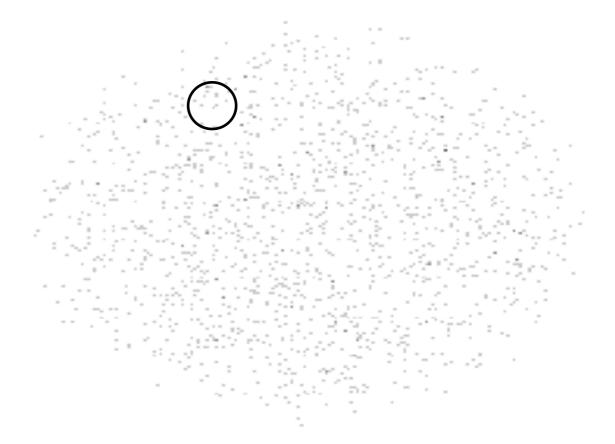
- ~32 threads
 operate at once
- Very small cache (48KB/SM)



...and it often does.

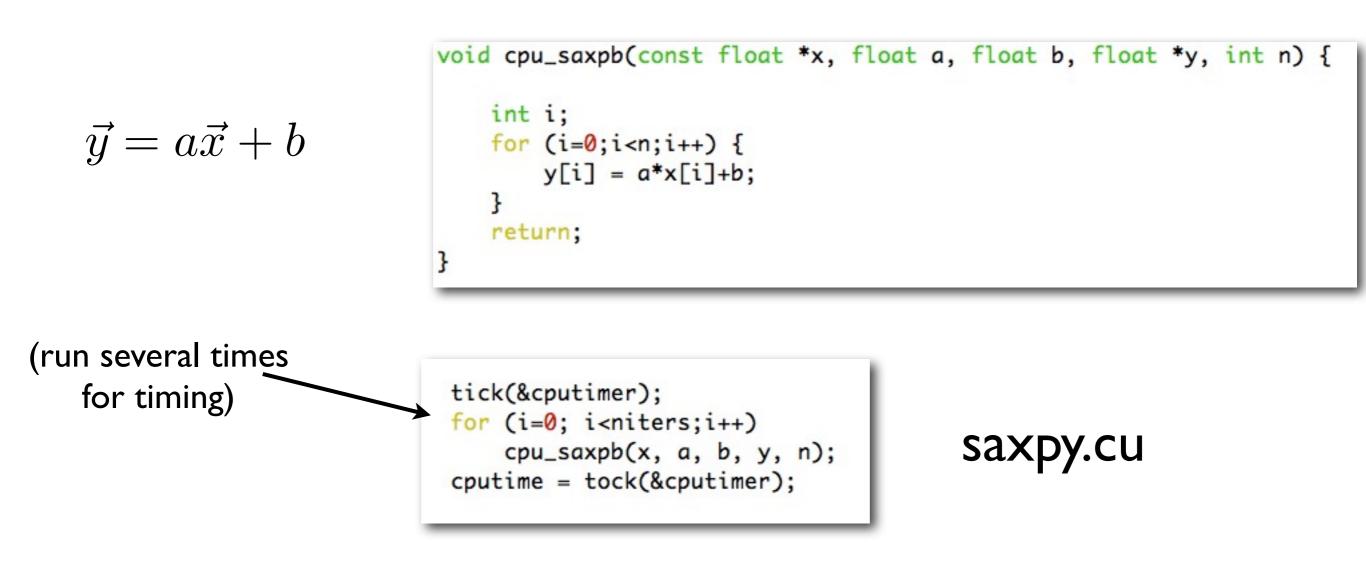
- Much of scientific computing is "data parallel"
- Same operation on each cell of grid, on each particle in domain.





Let's get straight to it

- From login node, ssh to arc01 (devel node of accelerator research cluster)
- •cd ~ppp; cp -r ~ljdursi/ppp/cuda .; cd cuda
- source ../setup
- module load cuda
- make
- •./saxpy



Question: How would we OpenMP this? MPI this?

$$\vec{y} = a\vec{x} + b$$

saxpy.cu

Very fine-grained parallelism. Each core does one (or few) tasks.

$$\vec{y} = a\vec{x} + b$$

cuda_saxpb<<<1, n>>>(xd, a, b, yd, n);

saxpy.cu

For loop over elements is implied by the call; n in the <<<>>'s invokes n of these kernels in parallel.


```
/* run GPU code */
CHK_CUDA( cudaMalloc(&xd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&yd, n*sizeof(float)) );
tick(&gputimer);
CHK_CUDA( cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDevice) );
for (i=0; i<niters; i++) {</pre>
    cuda_saxpb<<<1, n>>>(xd, a, b, yd, n);
7
CHK_CUDA( cudaMemcpy(ycuda, yd, n*sizeof(float), cudaMemcpyDeviceToHost) );
gputime = tock(&gputimer);
CHK_CUDA( cudaFree(xd) );
CHK_CUDA( cudaFree(yd) );
```

saxpy.cu

GPU Memory is separate from system memory (on card). Have to allocate/free it, and copy data GPU↔CPU


```
/* run GPU code */
CHK_CUDA( cudaMalloc(&xd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&yd, n*sizeof(float)) );
tick(&gputimer);
CHK_CUDA( cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDevice) );
for (i=0; i<niters; i++) {
    cuda_saxpb<<<1, n>>>(xd, a, b, yd, n);
}
CHK_CUDA( cudaMemcpy(ycuda, yd, n*sizeof(float), cudaMemcpyDeviceToHost) );
gputime = tock(&gputimer);
CHK_CUDA( cudaFree(xd) );
CHK_CUDA( cudaFree(yd) );
```

saxpy.cu

Notes:

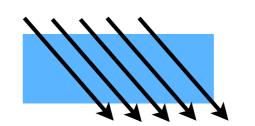
- CHK_CUDA -- test for error cord. More later.
- Allocating, copying to GPU memory: SLOW compared to computing capability of GPU. Avoid wherever possible.
- What happens if you try

 ./saxpb --nvals=200 ? ./saxpb --nvals=2048 ?

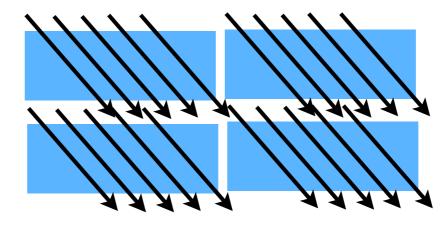
Threads, Blocks, Grids

- CUDA threads are organized into blocks
- Threads operate in SIMD (ish) manner -- each executing same instructions in lockstep.
- Only difference are thread ids
- Can have a grid of multiple blocks

CUDA Thread



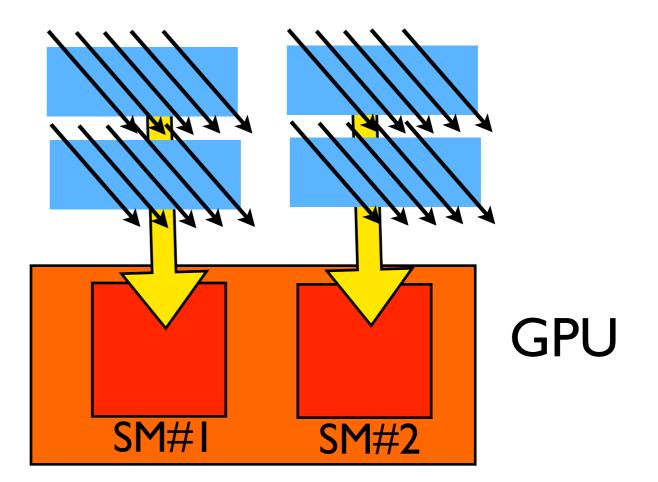
Block of CUDA Threads



Grid of CUDA Blocks

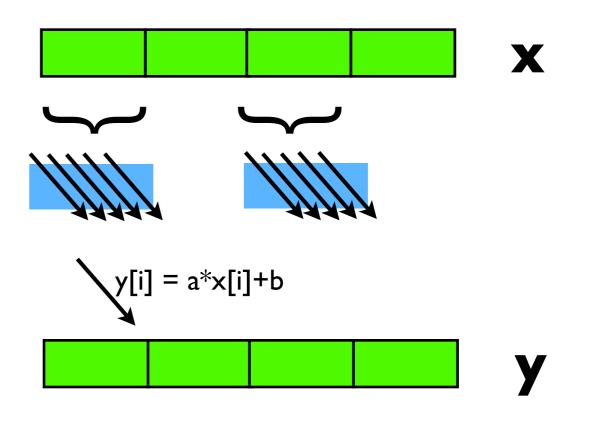
CUDA - H/W mapping

- Blocks are assigned to a particular SM
 - Executed there one 'warp' at a time (typically 32 threads)
- Multiple blocks may be on SM concurrently
 - Good; latency hiding
 - Bad SM resources must be divided between blocks
- If only use I Block I SM

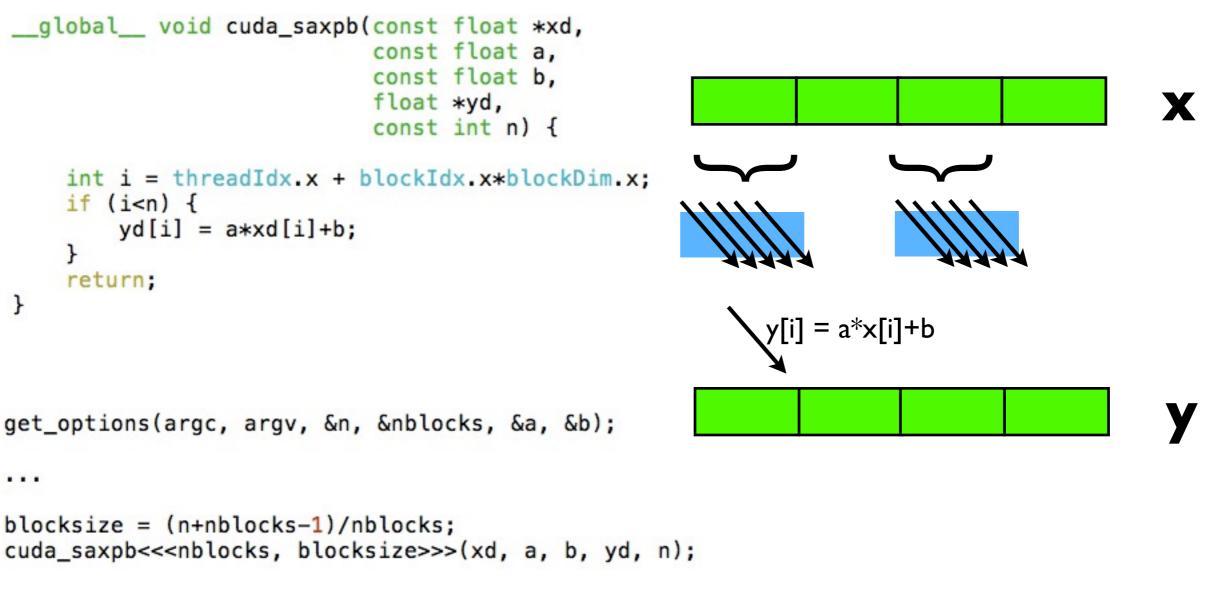


Multi-block y=ax+b

- Break input, output vectors into blocks
- Within each block, thread index specifies which item to work on
- Each thread does one update, puts results in y[i]



Multi-block y=ax+b



block-saxpb.cu

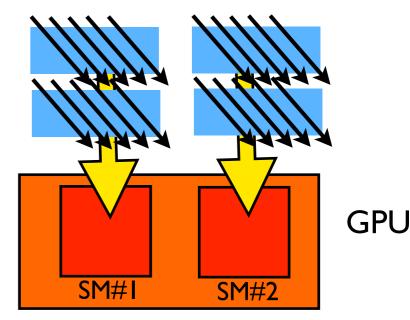
Hands on -- do multi-block saxpb

More blocks \rightarrow more SMs \rightarrow more FLOPs

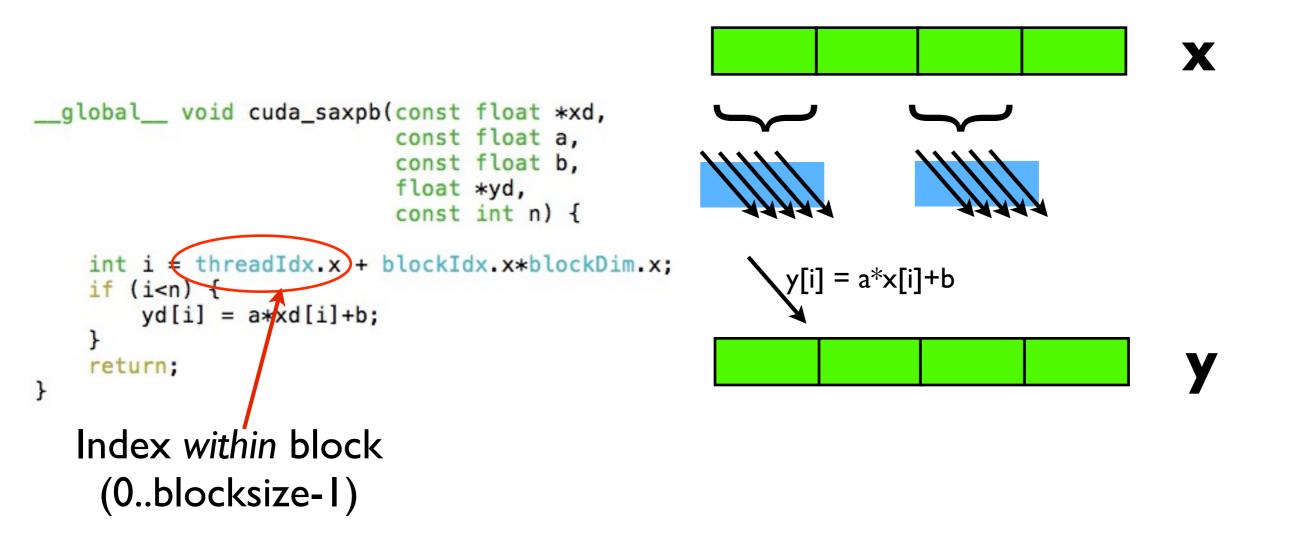
• We can use 1024 threads/ block:

Multiple calcs, so timing not dominated by memory copy

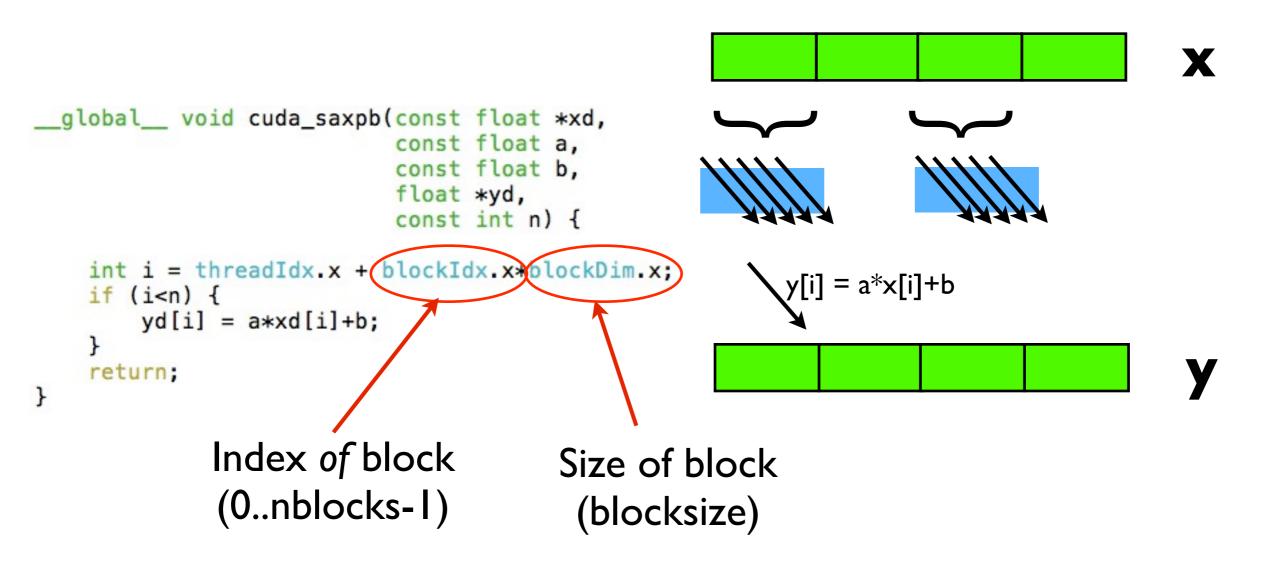
```
$ ./block-saxpb --nblocks=1 --nvals=1024 --niters=100
CPU time = 0.455 millisec.
GPU time = 0.511 millisec.
CUDA and CPU results differ by 0.0000000
$
$ ./block-saxpb --nblocks=8 --nvals=8192 --niters=100
CPU time = 3.62 millisec.
GPU time = 0.546 millisec.
CUDA and CPU results differ by 0.000000
```

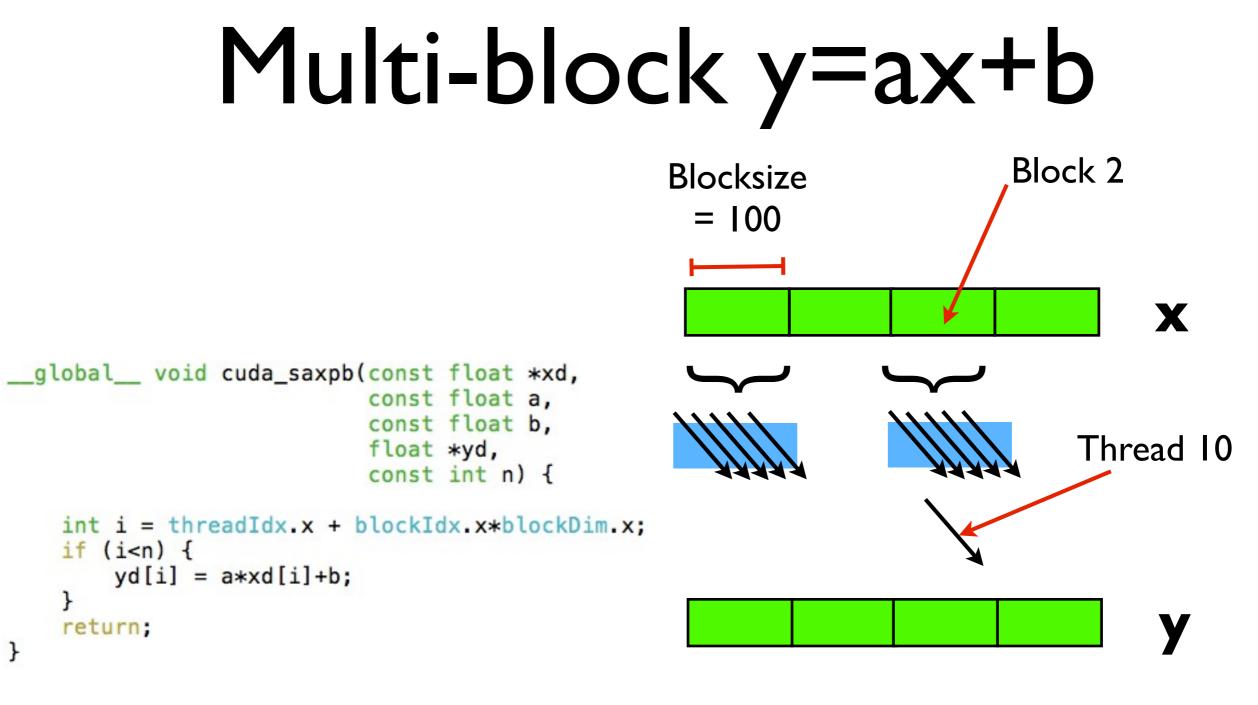


Multi-block y=ax+b



Multi-block y=ax+b





i = 10 + 2*100 = 210 yd[210] = a*xd[210] + b

How many threads/ block?

- Should be integral multiple of warp (32)
- No more than max allowed by scheduling hardware
- Can get last number from hardware specs
- But what if will be needed on several machines?
- API can return it:

cudaGetDeviceProperty

```
int i, count;
cudaDeviceProp prop;
CHK_CUDA( cudaGetDeviceCount( &count ));
for (i=0; i<count; i++) {
   CHK_CUDA( cudaGetDeviceProperties( &prop, i ));
   printf("Device %d has:\n",i);
   printf("Device %d has:\n",i);
   printf("\tName %s,\n",prop.name);
   printf("\tNumber of SMs %d,\n",prop.multiProcessorCount);
   printf("\tWarp Size %d,\n",prop.warpSize);
   printf("\tMax Threads/block %d,\n",prop.maxThreadsPerBlock);
```

querydevs.cu

cudaGetDeviceProperty

```
#define CHK_CUDA(e) {if (e != cudaSuccess) { \
    fprintf(stderr,"Error: %s\n", cudaGetErrorString(e)); \
    exit(-1);}\
}
```

All CUDA calls return cudaSuccess on successful completion.

GPU hardware does not try very hard to catch errors/notify you; testing return codes important!

Common to see simple automation like this wrapping all CUDA calls; bare minimum for sensible operation.

Test early, fail often.

Why the .xs?

- For convenience, CUDA allows thread, block indicies to be multidimensional
- Thread blocks can be 3 dimensional (512,512,64)
- Grids of blocks can be 2 dimensional (64k, 64k, 1)
- These variables are of type dim3 or uint3
- CUDA has int1, int2, int3, int4, float1, float2, float3, float4, etc.

```
yd[i] = a*xd[i]+b;
}
```

```
return;
```


Why the .xs?

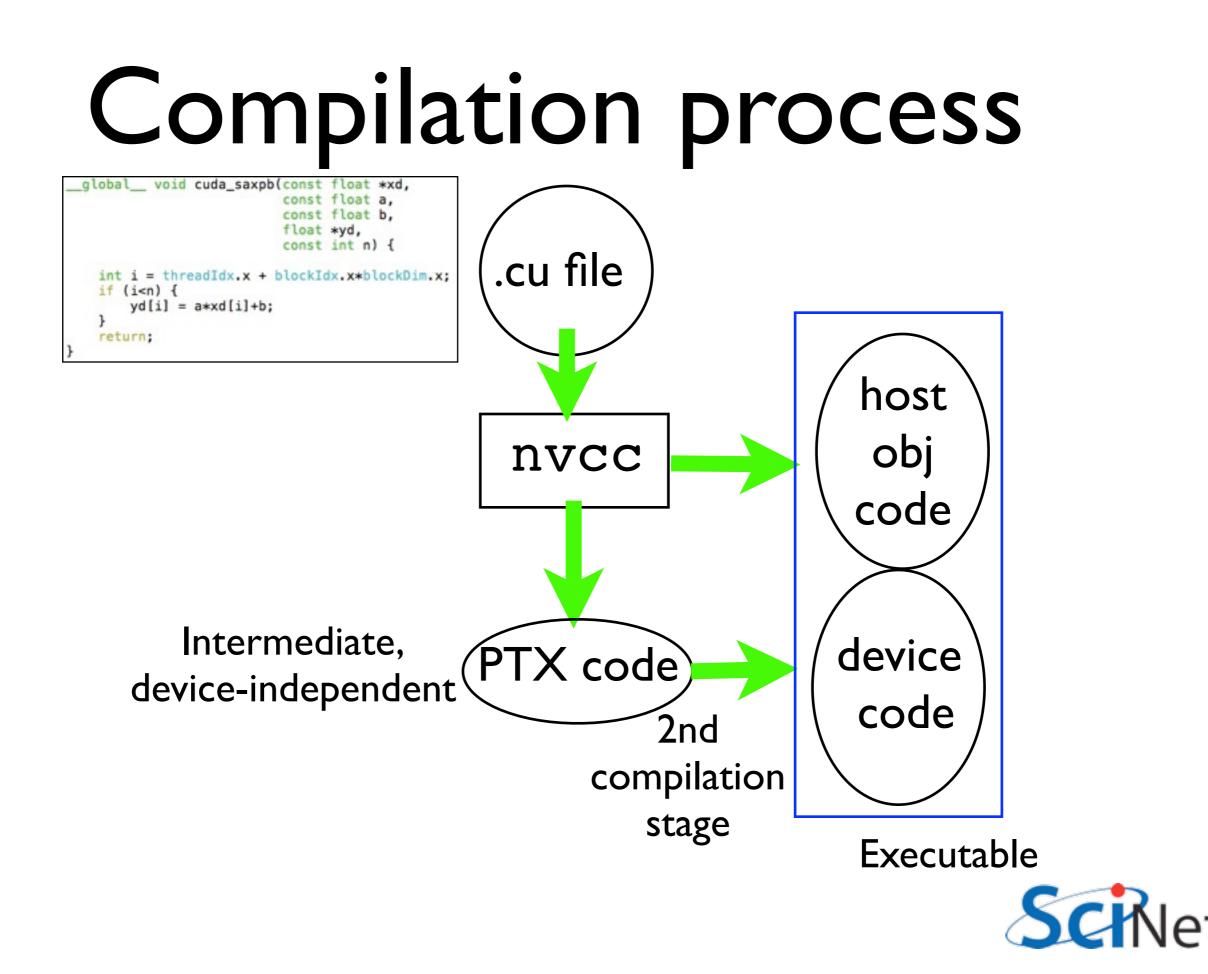
- threadIdx.{x,y,z} thread index
- blockDim.{x,y,z} size of block (# of threads in each dim)
- blockIdx.{x,y,z} block index
- gridDim.{x,y,z} size of grid (# of blocks in each dim)
- warpsize size of warp (int)

```
yd[i] = a*xd[i]+b;
}
return;
```


Why the .xs?

- _global__ device code that can be seen (invoked) from host.
- host default. Not usually interesting.
- <u>device</u> device code.
 Can be called only from other device code.
- <u>host</u> <u>device</u> compiled for both host and device.

```
yd[i] = a*xd[i]+b;
}
return;
```

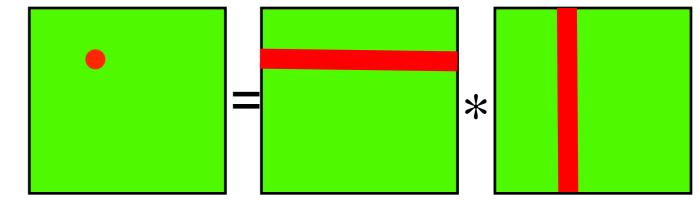



Restrictions

return;

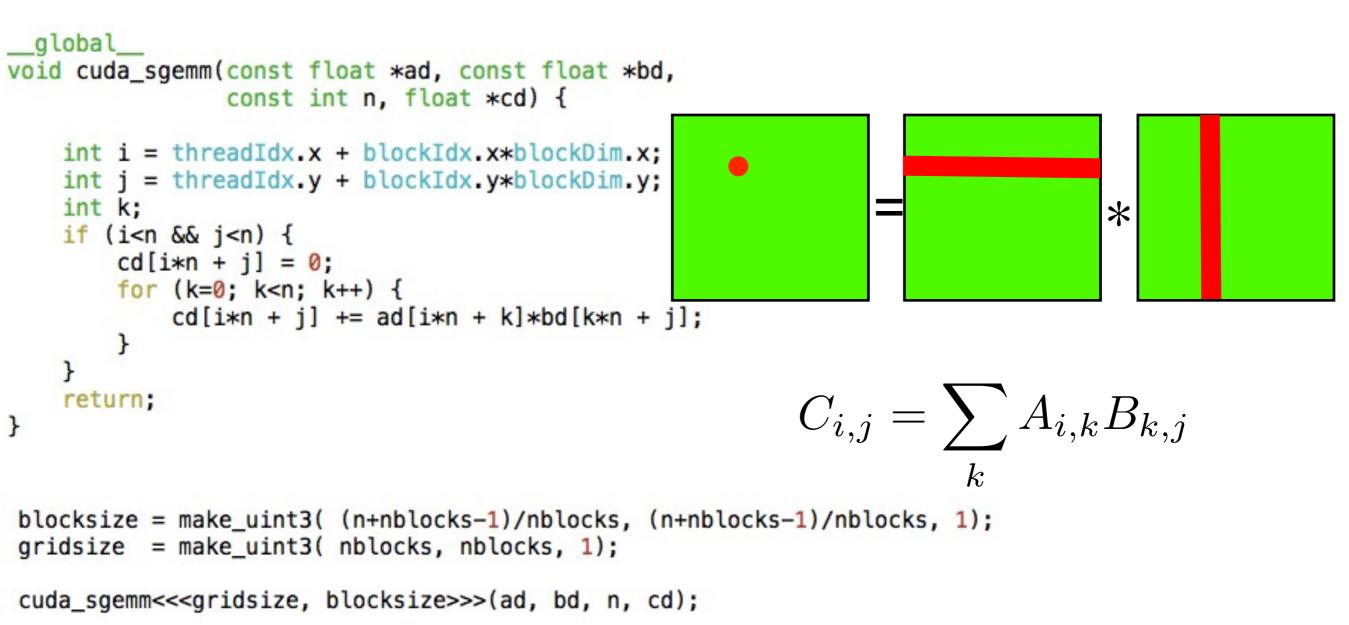
- global functions can't recurse, neither can device on non-Fermis
- No function pointers to ______device____ functions on non-fermis, can't take address of ______ device___ function
- Can't have static variables in global___, __device____
 functions
- Can't use varargs with device code

- Use of 2/3d thread blocks, or 2d grids, never strictly necessary...
- But can make code clearer, shorter.
- Matrix multiplication



$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$


```
void cpu_sgemm(const float *a, const float *b,
                const int n, float *c) {
    /* this, of course, is a
       terrible implementation */
    int i, j, k;
    double sum;
    for (i=0;i<n;i++) {</pre>
                                                                               *
        for (j=0;j<n;j++) {</pre>
            sum = 0.;
            for (k=0;k<n;k++) {</pre>
                 sum += a[i*n + k]*b[k*n + j];
            c[i*n + j] = sum;
                                                       C_{i,j} = \sum A_{i,k} B_{k,j}
        }
    }
    return;
}
             matmult.cu
```


```
global
void cuda_sgemm_reg(const float *ad, const float *bd,
                    const int n, float *cd) {
    int i = threadIdx.x + blockIdx.x*blockDim.x;
    int j = threadIdx.y + blockIdx.y*blockDim.y;
    int k;
                                                                                    *
    double sum;
    if (i<n && j<n) {
        sum = 0.;
        for (k=0; k<n; k++) {</pre>
            sum += ad[i*n + k]*bd[k*n + j];
        }
        cd[i*n + j] = sum;
                                                            C_{i,j} = \sum A_{i,k} B_{k,j}
    }
    return;
}
```


Timings:

Orig \$./matmult --matsize=160 --nblocks=10 Matrix size = 160, Number of blocks = 10. CPU time = 14.093 millisec. GPU time = 4.416 millisec. CUDA and CPU results differ by 0.162872

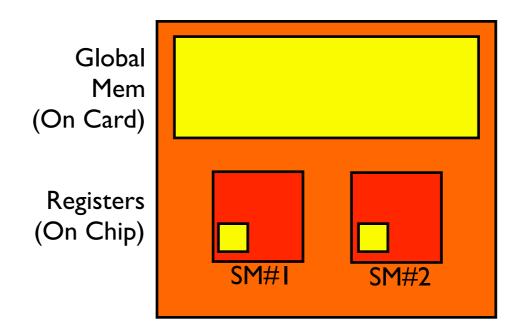
Double Prec. sum

\$./matmult --matsize=160 --nblocks=10 Matrix size = 160, Number of blocks = 10. CPU time = 14.047 millisec. GPU time = 2.219 millisec. CUDA and CPU results differ by 0.000000

Faster, even with double precision sums - why?

CUDA Memories

- All HPC, but especially GPU, all about planning memory access to be fast
- Global mem is off the GPU chip (but on the card); ~100 cycle latency
- Thread-local variables get put into registers on each SM - fast (~I cycle) but small



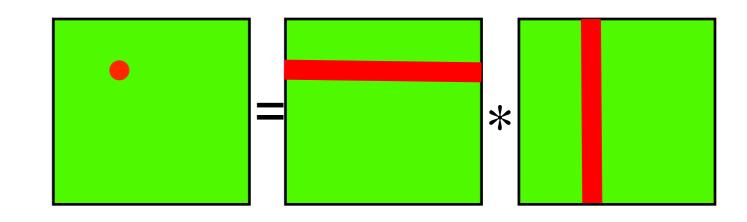
CUDA Memories

Memory	On Chip?	Cached?	R/W	Scope			
Register	On	No	R/W	Thread	Global		
Shared	On	No	R/W	Block	Mem (On Card)		
Global	Off	No	R/W	Kernel, Host	Registers		
Constant	Off	Yes	R	Kernel, Host	(On Chip)	SM#1	SM#2
Texture	Off	Yes	R(W?)	Kernel, Host			
'Local'*	Off	No	R/W	Thread			

* if you run out of registers, will put 'local' mem in global.

Memory usage in SGEMM

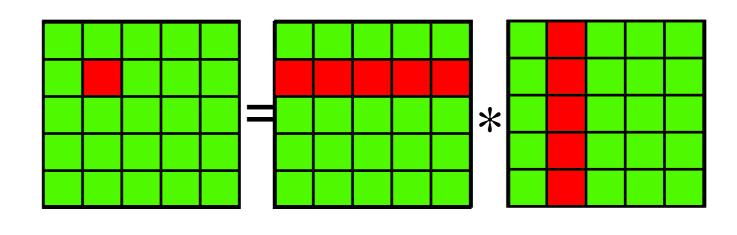
- How can we exploit this?
- N³ multiplies, adds
- 2N² data
- Regular access
- Opportunity for high memory re-use
- Need to find ways to bring data into shared memory (incurring global mem overhead once), use it several times



$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

Memory usage in SGEMM

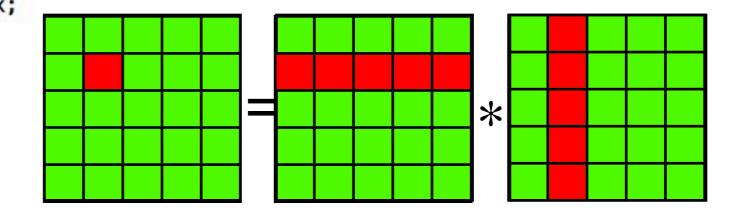
- One nice thing about matrix multiplication same as block multiplication, each subblock is a matrix mult
- Neighbouring threads within block all see nearby rows, columns
- Pull whole block in
- If b blocks in each dim, each data only pulled in 2b times, not 2n times



$$C_{bi,bj} = \sum_{k} A_{bi,bk} B_{bk,bj}$$

Memory usage in SGEMM

```
int i = threadIdx.x + blockIdx.x*blockDim.x;
int i = threadIdx.x + blockIdx.x*blockDim.x;
int locj = threadIdx.y;
int locj = threadIdx.y;
int locn = blockDim.x;
__shared___atile[TILESIZE][TILESIZE];
__shared___btile[TILESIZE][TILESIZE];
//...
```



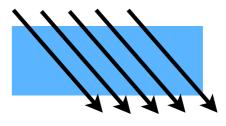
```
double sum = 0;
```

```
for (each tile) {
    //..load in tiles
    for (k=0; k<locn; k++) {
        sum += atile[loci*locn + k]*
            btile[k*locn + locj];
    }
}
c[i*n + j] = sum;</pre>
```

$$C_{bi,bj} = \sum_{k} A_{bi,bk} B_{bk,bj}$$

_____syncthreads()

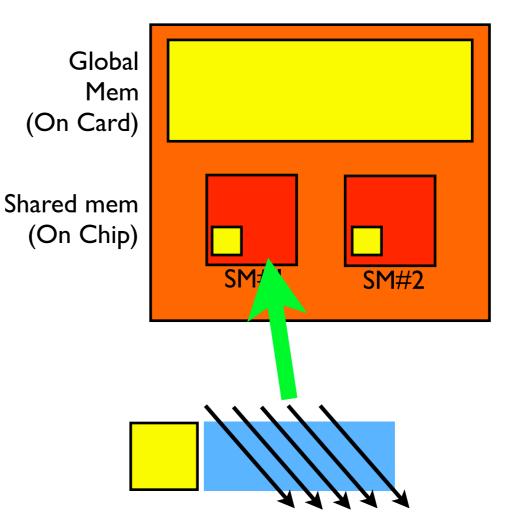
- Computation must wait until all threads have brought in their data
- Not all memory accesses may take same length of time
- <u>syncthreads()</u> waits until all threads in block are at same point.
- No equivalent between blocks
- Loop must similarly wait for computation



shared

arrays

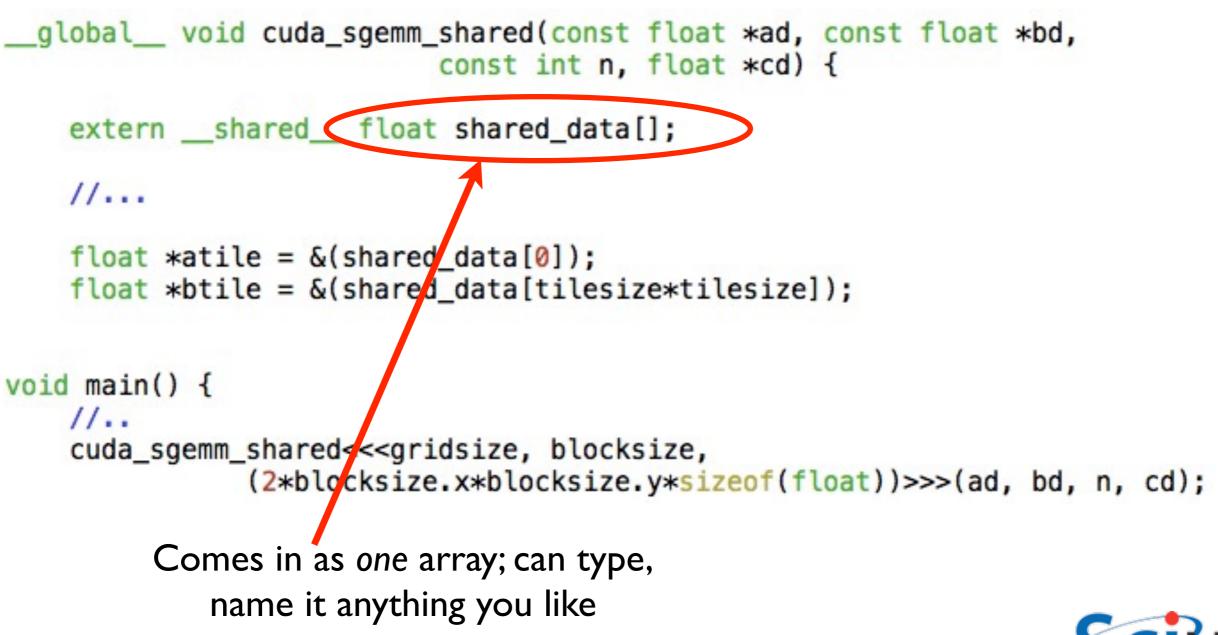
- If declared in device code, must be sized at compile time.
- No sharedMalloc (all threads in block would have to agree)
- can use consts or #defines to size array, but we want to maintain flexibility



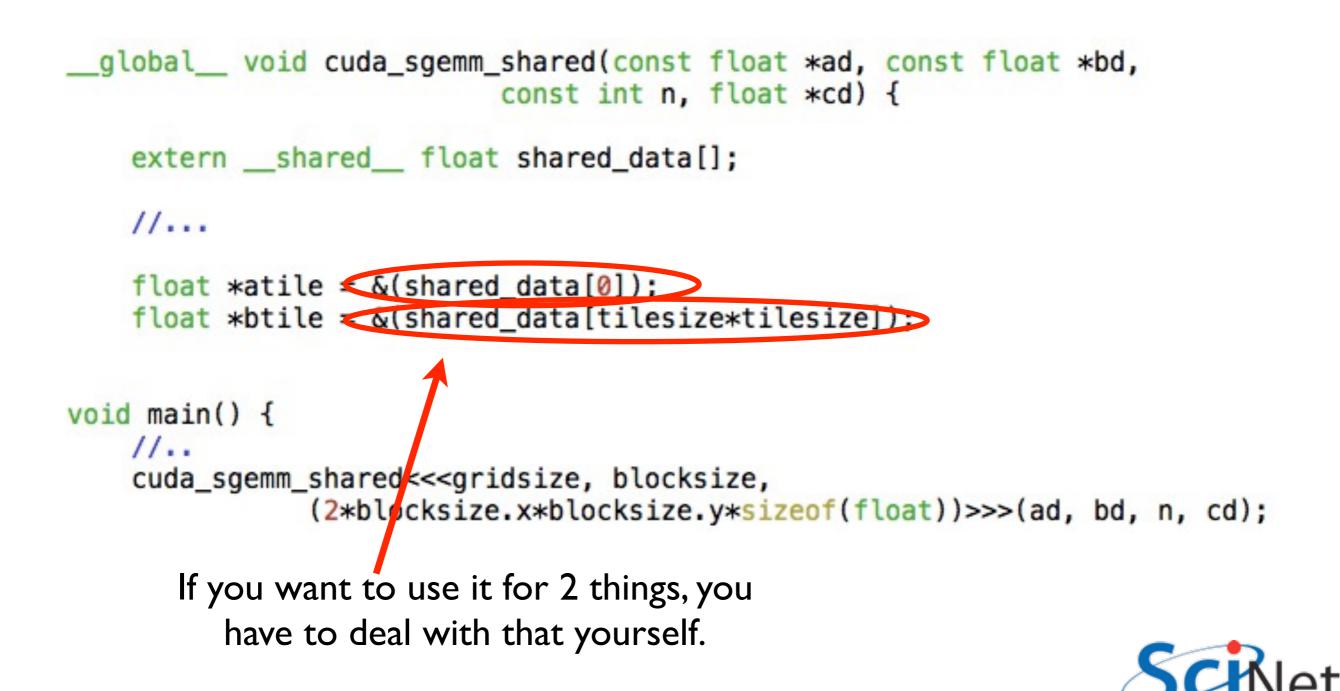
extern _____shared ___

```
global ____ void cuda_sgemm_shared(const float *ad, const float *bd,
                           const int n, float *cd) {
    extern __shared__float shared_data[];
    //...
    float *atile = &(shared_data[0]);
    float *btile = &(shared_data[tilesize*tilesize]);
void main() {
    //..
    cuda_sgemm_shared<<<gridsize, blocksize,
              [2*blocksize.x*blocksize.y*sizeof(float)>>>(ad, bd, n, cd);
     Optional 3rd argument - size (in bytes)
     of shared memory to allocate per block
```


extern _____shared ___



extern _____shared ___



Orig \$./matmult --matsize=160 --nblocks=10 Matrix size = 160, Number of blocks = 10. CPU time = 14.093 millisec. GPU time = 4.416 millisec. CUDA and CPU results differ by 0.162872

Double Prec. sum

```
$ ./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.047 millisec.
GPU time = 2.219 millisec.
CUDA and CPU results differ by 0.000000
```

Shared

```
$ ./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.041 millisec.
GPU time = 0.998 millisec.
CUDA and CPU results differ by 0.000000
```


Hands On

- Using matmult.cu as a template, look at laplacian.c implements 2d laplacian.
- Implement a CUDA version using shared memory, and make sure it gets same answer as CPU version.
- How would we do multiple iterations? Does entire memory have to be copied back each time?

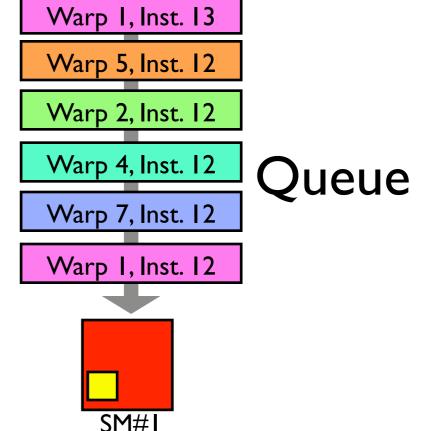
Making effective use of CUDA memories

- Preload data wherever possible
- Global memory -
 - Coalesced access
 - Make use of 128B (or, maybe, 32B) at a time
- Profiler to see what's happening
- Shared memory
 - Bank conflicts

Memory	On Chip?	Cached?	R/W	Scope
Register	On	No	R/W	Thread
Shared	On	No	R/W	Block
Global	Off	No	R/W	Kernel, Host
Constant	Off	Yes	R	Kernel, Host
Texture	Off	Yes	R(W?)	Kernel, Host
'Local'*	Off	No	R/W	Thread

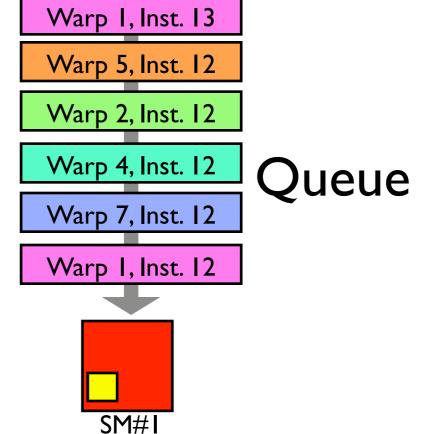
Stalling on Memory Access

- Graphics card schedules by the warp on an SM
- All warps that are ready to execute get scheduled
- Not ready to execute stalled on memory access
- Nothing ready SM sits idle.



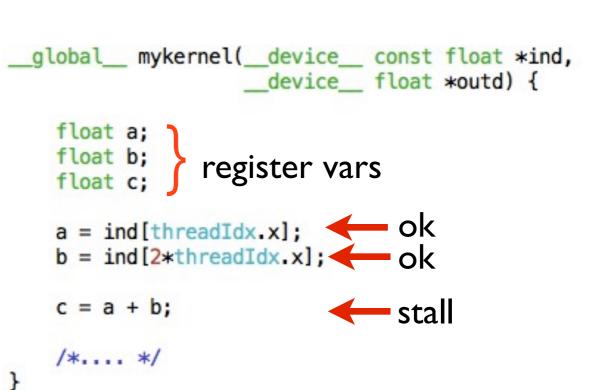
Stalling on Memory Access

- Two ways to ensure no idle SM:
 - Lots of warps (=blocks*threads/32); hide latency with other threads.
 - Little or no stalling on memory access; hide latency within threads.
- Sometimes work to counter purposes! Must experiment to see what works best for your algorithm.



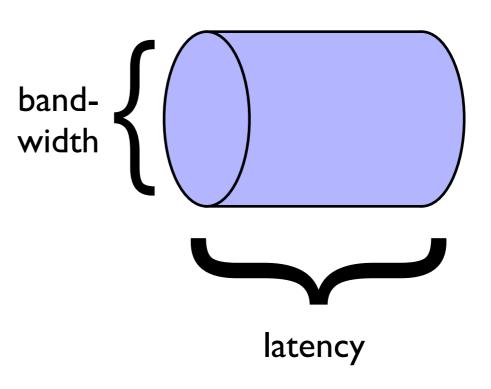
Stalling happens on use.

- Kernel does not stall on loading data
- Stalls when data not yet ready needs to be used
- Can "preload" data that you will need at beginning of kernel
- Hide latency by doing as much work as possible before need bulk of data.

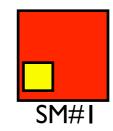


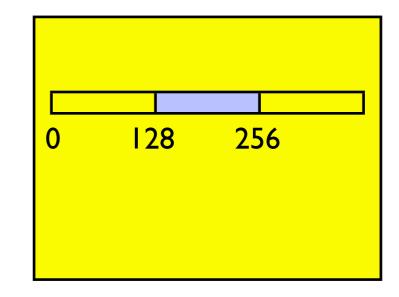
Keep memory accesses going

- Make maximum use of memory bandwidth hardware provides
- To fully use a pipe, must have bandwidth x latency memory accesses 'in flight'.
- Little's Law, Queueing theory - <u>http://en.wikipedia.org/</u> wiki/Little%27s_law

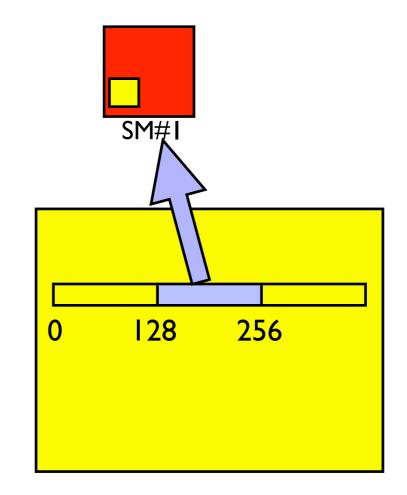


- Global memory is slow
- Get as much out of it per access as possible
- HW reads 128 byte lines from global memory (Fermi: can turn off caching and read 4x 32byte segments)
- Want to make the most of this

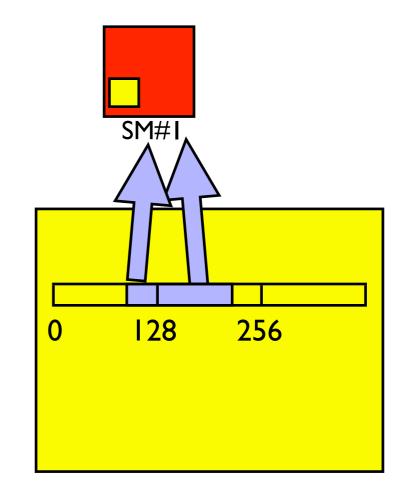




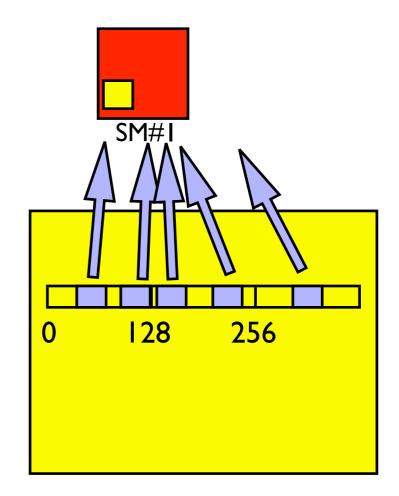
- Corresponds to 4B for each thread in a warp
- If each thread in warp reads consecutive float, aligned w/ boundary, can be coalesced into 1 read: high bandwidth
- Warp can continue after
 I global read cycle



- If each thread in warp reads consecutive float, but offset, can be coalesced into 2 read: reduced bandwidth
- Warp can continue after
 2 global read cycle (and 128B of bandwidth wasted)

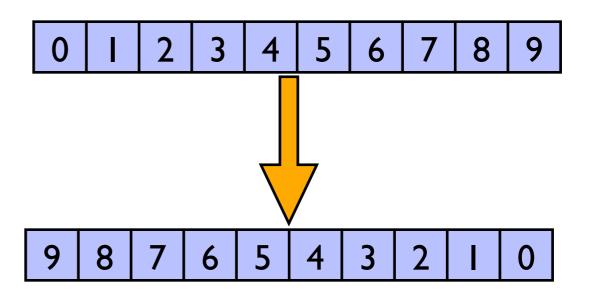


- Random access is a nightmare
- Can potentially take 32 times as long, wasting 97% of available global memory bandwidth



List reversal

- Imagine having to reverse a list
- (Sounds dumb, but matrix transpose, partial pivoting, various graph algorithms require data reordering)
- Obvious way to do this, particularly on older (pre cc 1.2) hardware, doesn't work well:

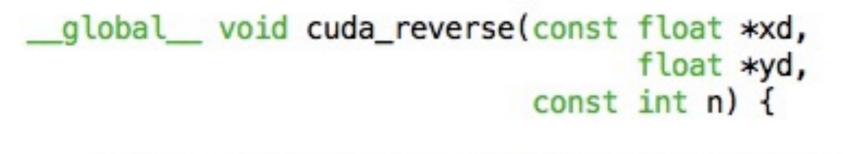


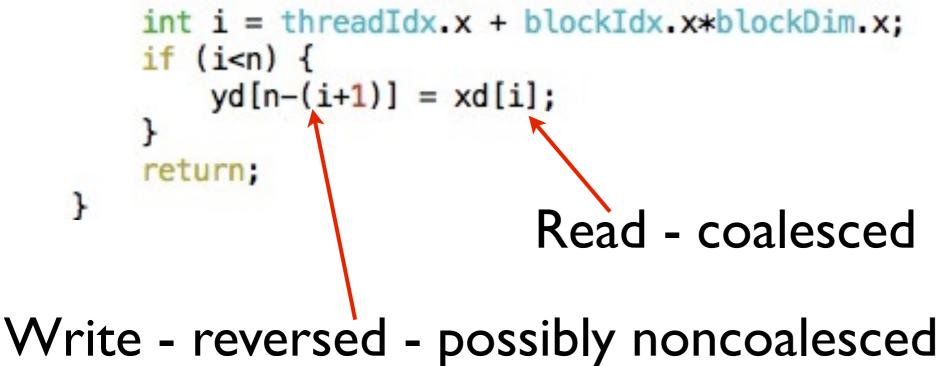
List reversal

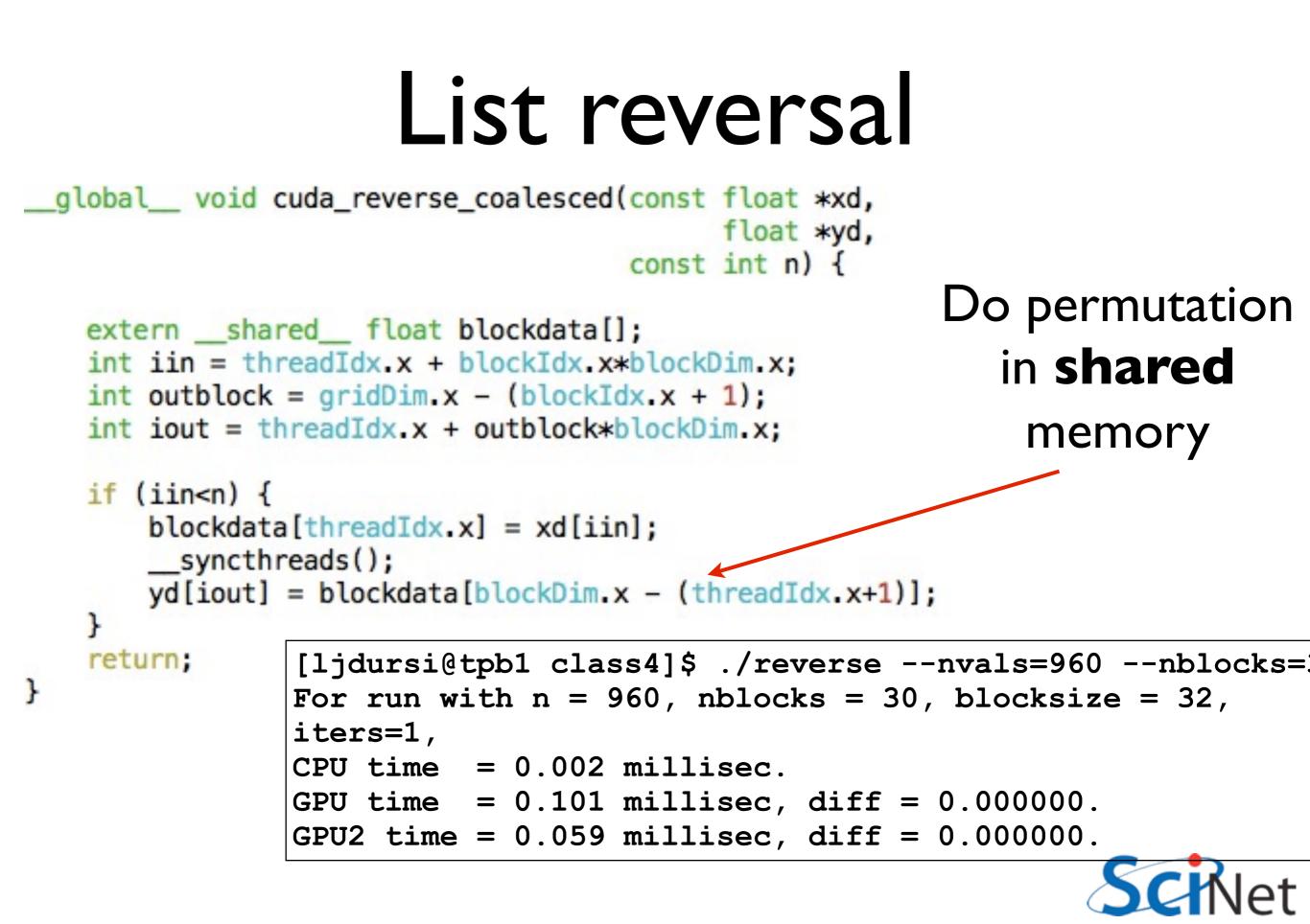
```
__global__ void cuda_reverse(const float *xd,
float *yd,
const int n) {
```

```
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<n) {
    yd[n-(i+1)] = xd[i];
}
return;
}
Read - coalesced</pre>
```

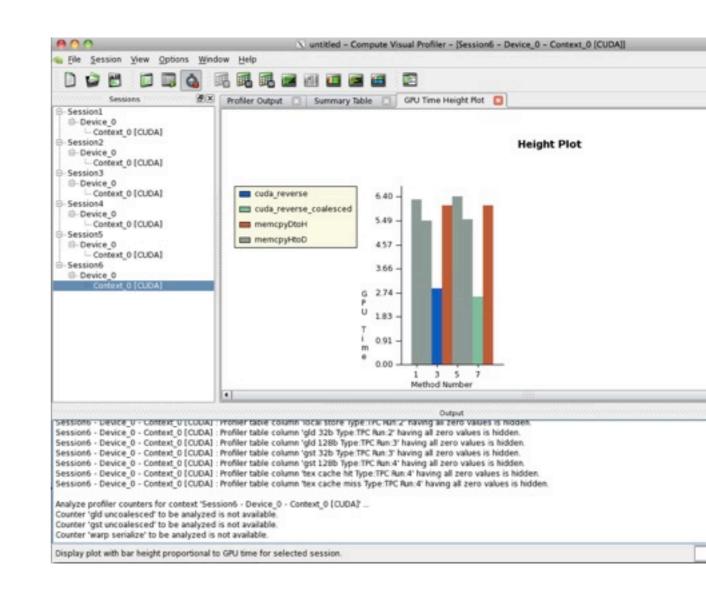

List reversal







- Sometimes we'd like to see more detail than just integrated timings
- Cuda/OpenCL profiler comes with NVidia SDK
- run with computeprof (/scinet/arc/cuda-3.2/ computeprof)
- From there, you can run an application and look at timings



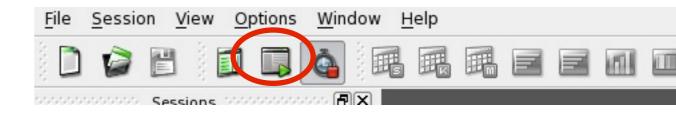
 Click 'Profile application' to begin getting data,

<u>File Session View Options Window</u>	v <u>H</u> elp					
	B B B					
Sessions Management of A						
😑 🔿 🔿 🛛 Welcome to Compute V	∕is					
Project————————————————————————————————————						
Recent Profile applica	tion					
Open Import CS	Import CSV					
Create	Help					
🕱 Show this dialog on startup						
	Close					

- Click 'Profile application' to begin getting data,
- Enter directory, executable, and arguments of program to profile,

00		X	Session settings			
ession (Profiler Cou	inters	Other Options			
Session	Name:	Sessio	onl			
Launch:		/home/	/ljdursi/gpuclass/class4/reverse" 💌			
Working	Directory:	/home	/ljdursi/gpuclass/class4			
Argumer	nts:	nvals=960nblocks=30				
Max Exe	cution Time:					
🗶 Enabl	e profiling at	applica	ation launch			
	API trace					
	separate wi	ndow				

- Click 'Profile application' to begin getting data,
- Enter directory, executable, and arguments of program to profile,
- and then run the program. Program runs several times to get all counter information.

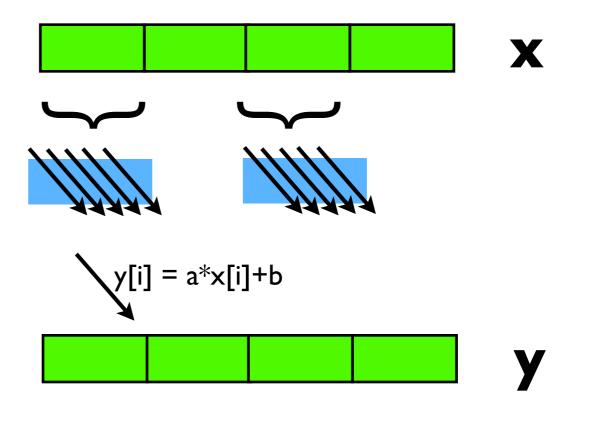


- Summary table shows lots of good stuff
- Here we see overall kernel time is about 12% faster, presumably because of roughly ~12% better global memory throughput.

Method	#Calls	GPU time 🛛 🗸	%GPU time	glob mem read throughpu	glob mem write	glob mem overall thro
1 cuda_reverse	1	2.88	6.95	1.33333	1.33333	2.66667
2 cuda_reverse_coalesced	1	2.56	6.18	1.5	1.5	3
3 memcpyHtoD	4	23.712	57.26			
4 memcpyDtoH	2	12.256	29.59			

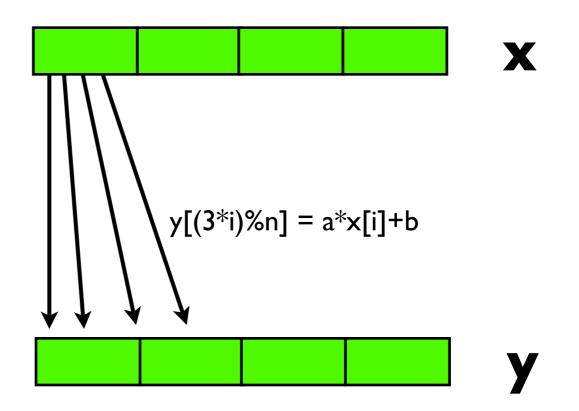
Another Example: Multi-block y=ax+b

- Break input, output vectors into blocks
- Within each block, thread index specifies which item to work on
- Each thread does one update, puts results in y[i]



Another Example: Multi-block y=ax+b

- Break input, output vectors into blocks
- Within each block, thread index specifies which item to work on
- Each thread does one update, puts results in y[i]
- But now with a stride:
- Can coalesce reads, writes, but not both.



Another Example: Multi-block y=ax+b

• Break input, output

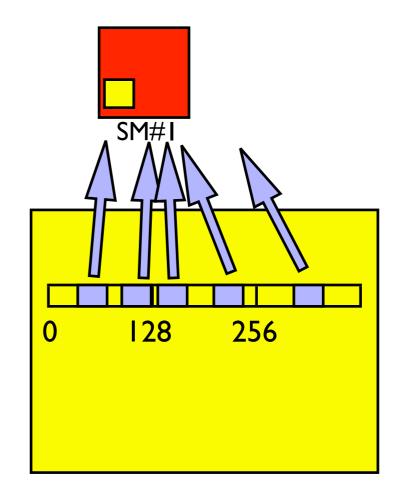
vectors into hlocks

Profiler Output

Γ	Method	#Calls	GPU time 🛛 🗸	%GPU time	glob mem read throughput	glob mem write	glob mem overall	gld efficiency	gst efficiency	instr
1	cuda_saxpb_strided	1	4.608	7.61	18.6806	18.6806	37.3611	0.307692	0.307692	0.14
2	cuda_saxpb	1	3.008	4.97	4.78723	4.78723	9.57447	1	1	0.04
3	memcpyHtoD	4	37.088	61.32						
4	memcpyDtoH	2	15.776	26.08						

- Each thread does one update, puts results in y[i]
- But now with a stride:
- Can coalesce reads, writes, but not both.

- Rewriting algorithm to ensure coalesced memory access probably most important optimization.
- Try to rearrange data before transfer to device to be in order needed;
- Reorder in shared mem if necessary.

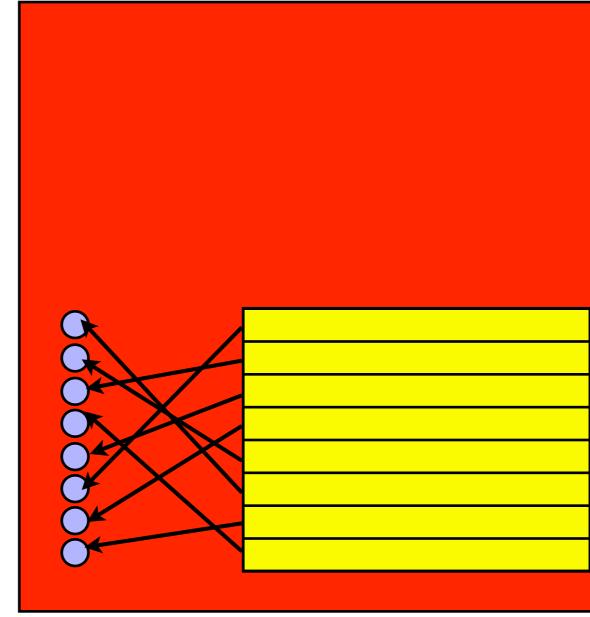


 Each thread in warp accesses different bank: no problem.

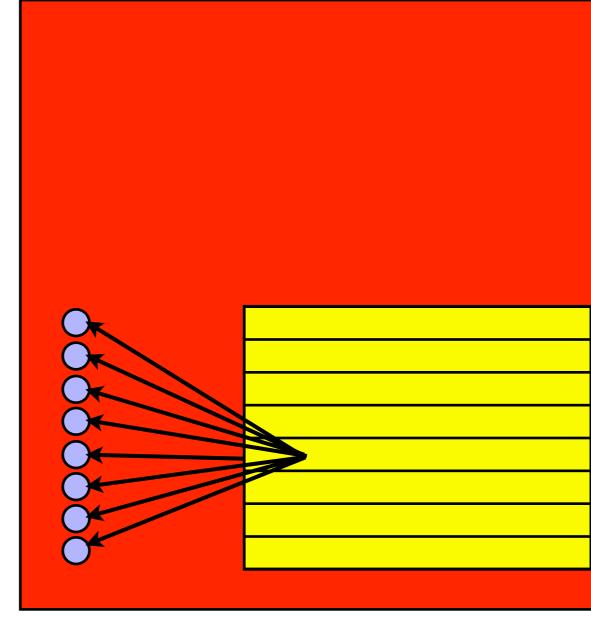
Ŏ		

SM#1

 Each thread in warp accesses different bank: no problem.

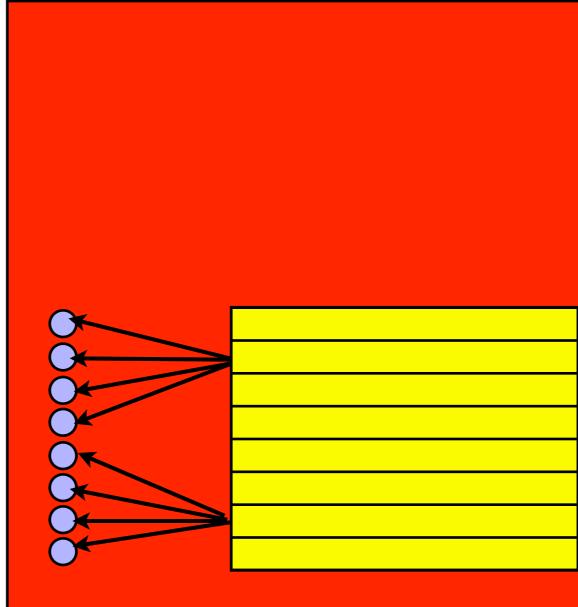


- Each thread in warp accesses different bank: no problem.
- Each thread accesses same one value: 'broadcast', no problem.



SM#1

- Each thread in warp accesses different bank: no problem.
- Each thread accesses same one value: 'broadcast', no problem.
- Multiple threads need data from same bank: conflict. Accesses are serialized.



SM#I

 Imagine 8 banks, and working on an 8xN matrix

		•	•	•	•	•	•
0	I	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great

0		2	3	4	5	6	7
8	9	10		12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great
- Column operations maximally bad

0	Ι	2	3	4	5	6	7
8	9	10		12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great
- Column operations maximally bad
- Solutions
 - Row ops if possible

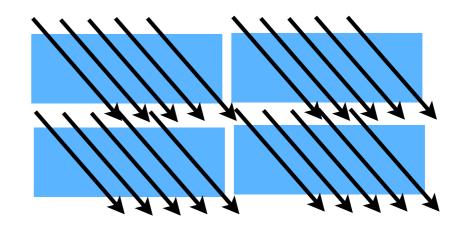
	-	•	•	•	•	•	•
0		2	3	4	5	6	7
8	9	10		12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great
- Column operations maximally bad
- Solutions
 - Row ops if possible
 - Pad matrix with extra column to stride across banks

•	•	•	•	•	•	•	•
0		2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

Warps in multi-d blocks

- Easy to see how warps are assigned in I-d block:
 - First 32 = warp0
 - Next 32 = warp1..
- How done in 2d block?
- C ordering: x first, then y
- blockDim.x = 32:
 - warp 0 : blockDim.y = 0
 - warp I: blockDim.y = I..




```
global____void cuda_sgemm_shared(const float *ad, const float *bd,
                                                                   Striding through matrix
                         const int n, float *cd)
                                                                    w/ slow moving index;
 extern ____shared___ float shared_data[];
                                                                   Massive bank conflicts if
  int loci = threadIdx.x;
                                                                     blocksize = warpsize
 int locj = threadIdx.y;
 int tilesize = blockDim.x;
 int bx = blockIdx.x;
  int by = blockIdx.y;
 int i = threadIdx.x + blockIdx.x*blockDim.x;
 int j = threadIdx.y + blockIdx.y*blockDim.y;
 int k;
 int blockk;
 float *atile = &(shared_data[0]);
  float *btile = &(shared_data[tilesize*tilesize]);
 double sum;
 if (i<n && j<n) {
     sum = 0.;
     for (blockk=0; blockk<gridDim.x; blockk++) {</pre>
         /* read in shared data */
          atile[loci*tilesize + locj] = ad[(tilesize*bx+loci)*n + (tilesize*blockk+locj)];
          btile[loci*tilesize + locj] = bd[(tilesize*blockk+loci)*n + (tilesize*by+locj)];
          _____syncthreads();
          for (k=0; k<tilesize; k++)</pre>
              sum += atile[loci*tilesize + k]*btile[k*tilesize + locj];
          ____syncthreads();
      }
      cd[i*n + j] = sum;
  }
                                                         matmult.cu
  return;
```


🥪 <u>F</u> ile <u>S</u> ession <u>V</u> iew <u>O</u> ptions <u>W</u> indow <u>H</u> elp						
nonnonnon Sessions nonnonnon 🗗 🗵 🛛 Profiler Output 🖾 Summary Table 🔯						
⊡… Session1 ⊡… Device 0	Γ	Method	#Calls	GPU time 🛛 🗸	%GPU time	warp serialize
Context_0 [CUDA]		cuda_sgemm_shared	1	112289	63.09	58021046
⊡ Session2 ⊡ Device_0 Context_0 [CUDA]	2	cuda_sgemm_shared_transpose	1	53739.4	30.19	0
	3	memcpyHtoD	4	6673.89	3.74	
⊡… Session3 ⊡… Device_0		memcpyDtoH	2	5268.99	2.96	

blocksize = 32 marten\$./matmult --matsize=1536 --nblocks=48 = warpsize Matrix size = 1536, Number of blocks = 48. CPU time = 29466.5 millisec, GFLOPS=0.245966 GPU time = 522.71 millisec, GFLOPS=13.865733, diff = 0.000000. GPU2 time = 128.905 millisec, GFLOPS=56.225572, diff = 0.000000.

4x performance

Memory structure informs block sizes:

- By choosing block size in such a way to maximize global, shared memory bandwidth and preloading data into shared, can extract significant performance
- Get your code working first, then use these considerations to get them working fast

```
$ ./matmult --matsize=1536 --nblocks=24
Matrix size = 1536, Number of blocks = 24.
CPU time = 29467.4 millisec, GFLOPS=0.245958
GPU time = 8.203 millisec, GFLOPS=883.549593, diff = 0.000000.
GPU2 time = 8.122 millisec, GFLOPS=892.361156, diff = 0.000000.
```

 Use tuned code where available (this is still much slower than CUBLAS, MAGMA!)

