
Intel Math Kernel Library

Ramses van Zon

SciNet HPC Consortium University of Toronto

TechTalk, March 2012

Introduction

So you want to do your scientific computation, as fast and as
soon as possible.

Perhaps you are not an expert at coming up with faster
algorithms that can take advantage of the specific hardware
architecture available to you, or you cannot/won’t spend the
time to become one.

Luckily, experts have already coded and optimized many
common scientific computational tasks, and tuned them for
particular hardware:

⇒Vendor specific libraries

Intel MKL

What is it and why should I use it?

Collection og highly optimized, high-performance
mathematical library for Intel chips.

Can replace other implementations of e.g. BLAS, LAPACK
and FFT.

It’s available on the GPC.

It’s easy to use (finally) when used with the intel compiler
(and intelmpi for mpi).

Take advantage of the knowledge that the Intel guys have of
their own chips.

Documentation is a bit tedious, so hence this friendly TechTalk!

Introduction: MKL basic usage

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"

int main(int argc,char**argv)
{
if (argc != 3)
printf("need 2 numbers\n");

else {
float x = atof(argv[1]);
float y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

$ icc example.c -mkl since v. 11.1

$./a.out 4 5

Sum is:9.000000

program example
real :: a,x,y
character(len=32) :: s1,s1
if(command argument count().ne.2)
then
print *, "need 2 numbers"

else
call get command argument(1,s1)
call get command argument(2,s2)
read (s1,*) x
read (s2,*) y
call saxpy(1,1.0,x,1,y,1)
print *, "Sum is:", y

end if
end program example

$ ifort example.f90 -mkl since v. 11.1

$./a.out 4 5

Sum is: 9.00000000000000

Introduction: MKL basic usage

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"

int main(int argc,char**argv)
{
if (argc != 3)
printf("need 2 numbers\n");

else {
float x = atof(argv[1]);
float y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

$ icc example.c -mkl

since v. 11.1

$./a.out 4 5

Sum is:9.000000

program example
real :: a,x,y
character(len=32) :: s1,s1
if(command argument count().ne.2)
then
print *, "need 2 numbers"

else
call get command argument(1,s1)
call get command argument(2,s2)
read (s1,*) x
read (s2,*) y
call saxpy(1,1.0,x,1,y,1)
print *, "Sum is:", y

end if
end program example

$ ifort example.f90 -mkl since v. 11.1

$./a.out 4 5

Sum is: 9.00000000000000

Introduction: MKL basic usage

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"

int main(int argc,char**argv)
{
if (argc != 3)
printf("need 2 numbers\n");

else {
float x = atof(argv[1]);
float y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

$ icc example.c -mkl since v. 11.1

$./a.out 4 5

Sum is:9.000000

program example
real :: a,x,y
character(len=32) :: s1,s1
if(command argument count().ne.2)
then
print *, "need 2 numbers"

else
call get command argument(1,s1)
call get command argument(2,s2)
read (s1,*) x
read (s2,*) y
call saxpy(1,1.0,x,1,y,1)
print *, "Sum is:", y

end if
end program example

$ ifort example.f90 -mkl since v. 11.1

$./a.out 4 5

Sum is: 9.00000000000000

Introduction: MKL basic usage

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"

int main(int argc,char**argv)
{
if (argc != 3)
printf("need 2 numbers\n");

else {
float x = atof(argv[1]);
float y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

$ icc example.c -mkl since v. 11.1

$./a.out 4 5

Sum is:9.000000

program example
real :: a,x,y
character(len=32) :: s1,s1
if(command argument count().ne.2)
then
print *, "need 2 numbers"

else
call get command argument(1,s1)
call get command argument(2,s2)
read (s1,*) x
read (s2,*) y
call saxpy(1,1.0,x,1,y,1)
print *, "Sum is:", y

end if
end program example

$ ifort example.f90 -mkl since v. 11.1

$./a.out 4 5

Sum is: 9.00000000000000

Introduction: MKL basic usage

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"

int main(int argc,char**argv)
{
if (argc != 3)
printf("need 2 numbers\n");

else {
float x = atof(argv[1]);
float y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

$ icc example.c -mkl since v. 11.1

$./a.out 4 5

Sum is:9.000000

program example
real :: a,x,y
character(len=32) :: s1,s1
if(command argument count().ne.2)
then
print *, "need 2 numbers"

else
call get command argument(1,s1)
call get command argument(2,s2)
read (s1,*) x
read (s2,*) y
call saxpy(1,1.0,x,1,y,1)
print *, "Sum is:", y

end if
end program example

$ ifort example.f90 -mkl since v. 11.1

$./a.out 4 5

Sum is: 9.00000000000000

Introduction: MKL basic usage

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"

int main(int argc,char**argv)
{
if (argc != 3)
printf("need 2 numbers\n");

else {
float x = atof(argv[1]);
float y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

$ icc example.c -mkl since v. 11.1

$./a.out 4 5

Sum is:9.000000

program example
real :: a,x,y
character(len=32) :: s1,s1
if(command argument count().ne.2)
then
print *, "need 2 numbers"

else
call get command argument(1,s1)
call get command argument(2,s2)
read (s1,*) x
read (s2,*) y
call saxpy(1,1.0,x,1,y,1)
print *, "Sum is:", y

end if
end program example

$ ifort example.f90 -mkl since v. 11.1

$./a.out 4 5

Sum is: 9.00000000000000

Introduction: MKL basic usage

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"

int main(int argc,char**argv)
{
if (argc != 3)
printf("need 2 numbers\n");

else {
float x = atof(argv[1]);
float y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

$ icc example.c -mkl since v. 11.1

$./a.out 4 5

Sum is:9.000000

program example
real :: a,x,y
character(len=32) :: s1,s1
if(command argument count().ne.2)
then
print *, "need 2 numbers"

else
call get command argument(1,s1)
call get command argument(2,s2)
read (s1,*) x
read (s2,*) y
call saxpy(1,1.0,x,1,y,1)
print *, "Sum is:", y

end if
end program example

$ ifort example.f90 -mkl since v. 11.1

$./a.out 4 5

Sum is: 9.00000000000000

Introduction: MKL Mathematical Functionality

A subset of what can it do:

1 Basic Linear Algebra
BLAS, Sparse BLAS, PBLAS

2 Linear solvers
LAPACK, ScaLAPACK1, Sparse Solver routines

3 Vector Mathematical & Statistical functions
VML, VSL

4 Fourier Transform functions
incl. MPI versions and FFTW wrappers

Introduction: MKL Technical Functionality

Programming Languages

1 Fortran 77

2 Fortran 90/95

3 C/C++ (sometimes through linking Fortran routines)

Works best (and easiest) with intel compilers and intelmpi.

Parallelism

1 Sequential: -mkl=sequential

2 Threaded: -mkl=parallel (default)

3 MPI: -mkl=cluster

Introduction: MKL Technical Functionality

Programming Languages

1 Fortran 77

2 Fortran 90/95

3 C/C++ (sometimes through linking Fortran routines)

Works best (and easiest) with intel compilers and intelmpi.

Parallelism

1 Sequential: -mkl=sequential

2 Threaded: -mkl=parallel (default)

3 MPI: -mkl=cluster

1. Basic Linear Algebra

There is a fortran standard for basic linear algebra subroutines.

MKL is only one of the implementations, and has

BLAS

CBLAS

Sparse BLAS

PBLAS

1. Basic Linear Algebra

BLAS

Level 1: vector-vector operations
ex. ~y← α~x +~y : ?axpy,?=s,d,c,z

Level 2: matrix-vector operations
ex. ~y← αA~x + β~y : ?gemv

Level 3: matrix-matrix operations
ex. C← AB + αC : ?gemm,?symm

Standard but bit cryptic (saxpy,dgemm,. . .) and ‘very fortran’

For ’full’ matrices.
For sparse vectors/matrices, MKL has separate routines.

1. Basic Linear Algebra

BLAS

Level 1: vector-vector operations
ex. ~y← α~x +~y : ?axpy,?=s,d,c,z

Level 2: matrix-vector operations
ex. ~y← αA~x + β~y : ?gemv

Level 3: matrix-matrix operations
ex. C← AB + αC : ?gemm,?symm

Standard but bit cryptic (saxpy,dgemm,. . .) and ‘very fortran’

For ’full’ matrices.
For sparse vectors/matrices, MKL has separate routines.

1. Basic Linear Algebra

BLAS

Level 1: vector-vector operations
ex. ~y← α~x +~y : ?axpy,?=s,d,c,z

Level 2: matrix-vector operations
ex. ~y← αA~x + β~y : ?gemv

Level 3: matrix-matrix operations
ex. C← AB + αC : ?gemm,?symm

Standard but bit cryptic (saxpy,dgemm,. . .) and ‘very fortran’

For ’full’ matrices.
For sparse vectors/matrices, MKL has separate routines.

1. Basic Linear Algebra

BLAS

Level 1: vector-vector operations
ex. ~y← α~x +~y : ?axpy,?=s,d,c,z

Level 2: matrix-vector operations
ex. ~y← αA~x + β~y : ?gemv

Level 3: matrix-matrix operations
ex. C← AB + αC : ?gemm,?symm

Standard but bit cryptic (saxpy,dgemm,. . .) and ‘very fortran’

For ’full’ matrices.
For sparse vectors/matrices, MKL has separate routines.

1. Basic Linear Algebra

BLAS

Level 1: vector-vector operations
ex. ~y← α~x +~y : ?axpy,?=s,d,c,z

Level 2: matrix-vector operations
ex. ~y← αA~x + β~y : ?gemv

Level 3: matrix-matrix operations
ex. C← AB + αC : ?gemm,?symm

Standard but bit cryptic (saxpy,dgemm,. . .) and ‘very fortran’

For ’full’ matrices.
For sparse vectors/matrices, MKL has separate routines.

1. Basic Linear Algebra

BLAS

Level 1: vector-vector operations
ex. ~y← α~x +~y : ?axpy,?=s,d,c,z

Level 2: matrix-vector operations
ex. ~y← αA~x + β~y : ?gemv

Level 3: matrix-matrix operations
ex. C← AB + αC : ?gemm,?symm

Standard but bit cryptic (saxpy,dgemm,. . .) and ‘very fortran’

For ’full’ matrices.
For sparse vectors/matrices, MKL has separate routines.

BLAS example

program dsymmtest
integer, parameter :: size = 4096
real*8, allocatable, dimension(:,:) :: a,b,c
allocate(a(size,size))
allocate(b(size,size))
allocate(c(size,size))
a = 2.0d0
b = -3.0d0
c = 0.0d0
call dsymm('L','U',size,size,1.0d0,a,size,b,size,0.0d0,c,size)
do j=1,size
do i=1,size
if (2.0d0*-3.0d0*size.ne.c(i,j)) then
print *, "Test failed"

end if
end do

end do
deallocate(a)
deallocate(b)
deallocate(c)

end program

Why not use MATMUL?

Matmul is slower.

Intel compiler does not replace matmul with call to BLAS.

Matmul also does not get parallelized.

Parallization

On-node parallelization (threaded) is easy:
-mkl=parallel

Can be used together with other OpenMP, but not nested.

Obeys OMP NUM THREADS

Using hyperthreading (OMP NUM THREADS=16) can hurt MKL
performance.

Off-node: PBLAS (Distributed data)
Fortran only. From C, you can call these, with some twists.
Note: mkl pblas.h at least declares the Fortran functions.

Why not use MATMUL?

Matmul is slower.

Intel compiler does not replace matmul with call to BLAS.

Matmul also does not get parallelized.

Parallization

On-node parallelization (threaded) is easy:
-mkl=parallel

Can be used together with other OpenMP, but not nested.

Obeys OMP NUM THREADS

Using hyperthreading (OMP NUM THREADS=16) can hurt MKL
performance.

Off-node: PBLAS (Distributed data)
Fortran only. From C, you can call these, with some twists.
Note: mkl pblas.h at least declares the Fortran functions.

Calling Fortran functions from C

First off: this is somewhat compiler specific, but we’re already
using intel’s, so that seems okay.

Function name in C appears with appended underscore .

Translate types

Function arguments are all pointers. Passing constants
requires storing them in a variable an using a pointer to it.

All arrays should be contiguous in memory. Default C layout
of 2d arrays is the transposed of the default Fortran layout.

Character strings as fortran function arguments are special, in
C the length of the string must be passed as a separate
parameter following the char *.

May need to link with ifort.

Do this when you must, but don’t if there is a C interface.

CBLAS

CBLAS Is a C interface to the Fortran BLAS calls

Requires inclusion of header file mkl cblas.h

Function names are cblas <blasname> (still cryptic).

No need to worry about mixed language calls.

Support for row-major matrices.

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"
int main(int argc,char**argv){
if (argc != 3) printf("need 2 numbers\n");
else {
float x = atof(argv[1]), y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

CBLAS

CBLAS Is a C interface to the Fortran BLAS calls

Requires inclusion of header file mkl cblas.h

Function names are cblas <blasname> (still cryptic).

No need to worry about mixed language calls.

Support for row-major matrices.

#include <stdio.h>
#include <stdlib.h>
#include "mkl cblas.h"
int main(int argc,char**argv){
if (argc != 3) printf("need 2 numbers\n");
else {
float x = atof(argv[1]), y = atof(argv[2]);
cblas saxpy(1,1.0,&x,1,&y,1);
printf("Sum is:%f\n", y);

}
}

2. Linear Solvers

Linear Algebra PACKage (LAPACK)

Linear algebra stuff like solving A~x = ~b

Standard but again bit cryptic (dgels,. . .) and ‘very fortran’

For sparse vectors/matrices, MKL has separate routines.

LAPACKE

Is a C interface to the Fortran LAPACK calls.

Requires inclusion of header file mkl lapacke.h

Function names are LAPACKE <lapackname>

No need to worry about mixed language calls.

Support for row-major matrices.

2. Linear Solvers

Linear Algebra PACKage (LAPACK)

Linear algebra stuff like solving A~x = ~b

Standard but again bit cryptic (dgels,. . .) and ‘very fortran’

For sparse vectors/matrices, MKL has separate routines.

LAPACKE

Is a C interface to the Fortran LAPACK calls.

Requires inclusion of header file mkl lapacke.h

Function names are LAPACKE <lapackname>

No need to worry about mixed language calls.

Support for row-major matrices.

2. Linear Solvers

Scalable LAPACK 1 (ScaLAPACK1)

Distributed memory version of LAPACK
(Built on parallel fortran packages PBLAS and BLACS)

No C interface: have to call the fortran functions:

defined in mkl scalapack.h

To build with distributed memory, use the mpi
versions of the compilers (module load intelmpi),
and compile and link with mpifort or mpicc using:

-mkl=cluster

Does not support ScaLAPACK2 (but the gpc
module scalapack/2.0.1-intel-intelmpi does).

2. Linear Solvers

Sparse Solver routines

A sparse matrix is a matrix with a lot of zero elements

In principle zeros don’t have to be stored or computed with.

MKL contains a large variety of solvers, implicit (iterative) and
explicit(direct), for sparse matrices, as well as preconditioners.

Again, only Fortran (but there is mkl solver.h)

3. Vector Mathematical & Statistical Functions

Vector Mathematical Library (VML)

Most modern processors have a small degree of vector
parallelism on each cpu (SIMD).

E.g. 4 additions can be done at the same time.

Hard to program for explicitly, but compilers can use them for
simple loops.

Beyond that, the VML offers functions for computing e.g.
power, trigonometric, exponential, error functions, . . .

Act on n numbers at a time.

C and Fortran

3. Vector Mathematical & Statistical Functions

Vector Statistical Library functions (VSL)

Random numbers!

Various pseudo random number generators.
Congruential generators, Mersenne Twister

Some are very suitable for parallelization.

Commonly used distributions:
Bernoulli, Poisson, uniform, exponential, log-normal, beta, . . .

Convolutions and correlations as well.

3. Vector Mathematical & Statistical Functions

Vector nature of VSL

Generate n random numbers at a time.

Can lead to speed up over one-number-at-a-time methods.

Uses VML for non-uniform distributions.

How about parallelization?

In parallel applications, one may need a sequence of random
number generators for each thread or process.

Should independently generate independent numbers

This can be accomplished by

Using different parameters for same type of rng (MT)

Skipping ahead or leapfrog (works for some of the VSL rngs)

3. Vector Mathematical & Statistical Functions

Vector nature of VSL

Generate n random numbers at a time.

Can lead to speed up over one-number-at-a-time methods.

Uses VML for non-uniform distributions.

How about parallelization?

In parallel applications, one may need a sequence of random
number generators for each thread or process.

Should independently generate independent numbers

This can be accomplished by

Using different parameters for same type of rng (MT)

Skipping ahead or leapfrog (works for some of the VSL rngs)

3. Vector Mathematical & Statistical Functions

Vector nature of VSL

Generate n random numbers at a time.

Can lead to speed up over one-number-at-a-time methods.

Uses VML for non-uniform distributions.

How about parallelization?

In parallel applications, one may need a sequence of random
number generators for each thread or process.

Should independently generate independent numbers

This can be accomplished by

Using different parameters for same type of rng (MT)

Skipping ahead or leapfrog (works for some of the VSL rngs)

VSL example

#include <stdio>
#include "mkl vsl.h"
#define size 100000
#define repeat 1000
int main() {
VSLStreamStatePtr str;
vslNewStream(&str,VSL BRNG MT19937,777);
double s = 0;
for (int i=0; i<repeat; i++) {
double r[size];
vdRngGaussian(VSL METHOD DGAUSSIAN ICDF,

str,size,r,5,2);
for (int j=0; j<size; j++)
s += r[j];

}
s /= size*(double)repeat;
vslDeleteStream(&str);
printf(Sample mean of normal distribution=%lf\n,s);

}

4. Fourier Transform functions

Fast Fourier transforms for real and complex data

Serial, threaded and distributed (cluster) versions.

Workflow:

1 Build a descriptor once
2 Commit a descriptor (lets mkl try out some tweaks)
3 Execute fft several times.
4 Destroy descriptor.

FFTW wrappers

FFTW is a good free implementation of the FFT.

MKL comes with wrappers that make MKL act like FFTW.

Can be a bit tricky, especially if you don’t have ’standard’
usage. There are exception cases on what’s supported for
which you have to read the fine print of the MKL manual.

4. Fourier Transform functions

Fast Fourier transforms for real and complex data

Serial, threaded and distributed (cluster) versions.

Workflow:

1 Build a descriptor once
2 Commit a descriptor (lets mkl try out some tweaks)
3 Execute fft several times.
4 Destroy descriptor.

FFTW wrappers

FFTW is a good free implementation of the FFT.

MKL comes with wrappers that make MKL act like FFTW.

Can be a bit tricky, especially if you don’t have ’standard’
usage. There are exception cases on what’s supported for
which you have to read the fine print of the MKL manual.

FFT example 1

#include <complex.h>
#include "mkl dfti.h"
void mkl transform(int N,

float complex *in,
float complex*out,
int s)

{
DFTI DESCRIPTOR HANDLE handle;
DftiCreateDescriptor(&handle,DFTI SINGLE,DFTI COMPLEX,1,N);
DftiSetValue(handle,DFTI PLACEMENT,DFTI NOT INPLACE);
if (s > 0) {
DftiCommitDescriptor(handle);
DftiComputeForward(handle,in,out);

} else {
DftiSetValue(handle,DFTI BACKWARD SCALE,1.0f/N);
DftiCommitDescriptor(handle);
DftiComputeBackward(handle,in,out);

}
DftiFreeDescriptor(&handle);

}

FFT example 2 (fftw wrapper)

#include <complex.h>
#include "fftw3 mkl.h"
void fftw transform(int N,

float complex* in,
float complex* out,
int s)

{
int dir = isign>0?FFTW FORWARD:FFTW BACKWARD;
fftw plan p;
p=fftw plan dft 1d(N,(fftw complex*)in,

(fftw complex*)out,dir,
FFTW ESTIMATE);

fftw execute(p);
if (isign<0)
for (int i=0;i<N;i++)
out[i] /= N;

fftw destroy plan(p);
}

Links

Linear algebra:

BLAS: www.netlib.org/blas/faq.html
LAPACK: www.netlib.org/lapack

ScaLAPACK: www.netlib.org/scalapack

MKL:

software.intel.com/sites/products/documentation/hpc/mkl/
userguides/mkl userguide lnx.pdf

software.intel.com/sites/products/documentation/hpc/mkl/
vslnotes/index.htm

software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Lecture slides

wiki.scinethpc.ca/wiki/images/a/ad/Numerics.pdf (rngs)
wiki.scinethpc.ca/wiki/images/0/0a/Linearalgebra.pdf
wiki.scinethpc.ca/wiki/images/8/8c/SCLecture8.pdf (fft)

