
Research Computing with Python, Lecture 3,
Programming Strategies and Version control

Ramses van Zon

SciNet HPC Consortium

November 11, 2014

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 1 / 56

Top-down Programming

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 2 / 56

About Python Programming

In lecture 1, we saw a lot of elements of programming in python.

We did not discuss how you actually go about using them.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 3 / 56

Simple example

Print the numbers from 1 to n, separated by ‘-’, for n=1..12
1
1 - 2
1 - 2 - 3
1 - 2 - 3 - 4
1 - 2 - 3 - 4 - 5
1 - 2 - 3 - 4 - 5 - 6
1 - 2 - 3 - 4 - 5 - 6 - 7
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 4 / 56

Simple Programming Example (1)

Print the numbers from 1 to n, separated by ‘-’, for n=1..12

Forget about code, what you would do when solving this?
1 Take the first value of n (n=1)
2 Write the numbers 1..n
3 Repeat step 2 for the next value of n, unless n is equal to 12

This is a loop!

This is a demonstration of top-down programming, so we’ll leave the details
of step 2 for later.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 5 / 56

Simple Programming Example (2)

Code sketch
#Print numbers from 1 to n separated by - for n=1..12
#1. Take the first value of n (n=1)

#2. Write the numbers 1..n

#3. Repeat step 2 for the next value of n unless n==12

Doesn’t matter if you do this in comments, or in some pseudo-code.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 6 / 56

Simple Programming Example (3)

Fill in high-level details
#Print numbers from 1 to n separated by - for n=1..12
#1. Take the first value of n (n=1)
n=1
#2. Write the numbers 1..n
print "Write the numbers 1 .. ",n
#3. Repeat step 2 for next value of n unless n==12
n=n+1
if (n!=12) goto step_two

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 7 / 56

Simple Programming Example (3)

Oops!
1 Step two not really implemented, just prints what it should do.

Will fill in details later (top-down)
2 Python does not have a goto statement.

We need a counting loop.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 8 / 56

Intermezzo: Counting Loop

Loops in python
Recall:

In Python, a for loop goes over values in a list (or similar).

Counting = going over a list of values from a start to an end.

Such a range of values is created by the range function:

In [1]: range(1,13)
Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Writing the counting loop
for i in range(1,13):

print i, # or anything we want to do with i

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 9 / 56

Intermezzo: Counting Loop

Caution using ranges to count
range function generates and stores all these values in memory.

When we’re counting large values, this can cause memory troubles.

We only want one at value at the time

xrange function only generates one value at a time:

In [2]: xrange(1,13)
Out[2]: xrange(1, 13)
In [3]: for i in xrange(1,13):

.... print i,

....
1 2 3 4 5 6 7 8 9 10 11 12

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 10 / 56

Simple Programming Example (4)

Finish filling in high-level details
#Print numbers from 1 to n separated by - for n=1..12
#1. Take the first value of n (n=1)
for n in xrange(1,13):

#2. Write the numbers 1..n
print "Write the numbers 1 .. ",n

#3. Repeat for next value of n unless n==12

Although part 2 does not do what it should yet, this does run.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 11 / 56

Simple Programming Example (5)

Details for step 2
Write the numbers 1..n

Sub-step 1: No coding, write what you would do:
1 Take the first value to write (1)
2 Write it down
3 Add a dash
4 Repeat steps 2 and 3 for next value unless it is equal to n.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 12 / 56

Simple Programming Example (6)

Sub-step 2: Code top level comments:
#Write the numbers 1..n
#1. Take the first value to write (1)

#2. Write it down

#3. Add a dash

#4. Repeat step 2+3 for next value unless equal to n

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 13 / 56

Simple Programming Example (7)

Sub-step 3: Fill in code
#Write the numbers 1..n
#1. Take the first value to write (1)
for i in xrange(1,n+1):

#2. Write it down
print i,
#3. Add a dash
print '-',

#4. Repeat step 2+3 for next value unless equal to n

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 14 / 56

Simple Programming Example (8)

Sub-step 4: Insert code instead of “print”
#Print numbers from 1 to n separated by - for n=1..12
#1. Take the first value of n (n=1)
for n in xrange(1,13):

#2. Write the numbers 1..n
#2.1 Take the first value to write (1)
for i in xrange(1,n+1):

#2.2 Write it down
print i,
#2.3. Add a dash
print '-',

#2.4. Repeat step 2+3 for next value unless equal to n
#3. Repeat for next value of n unless n==12

Note the extra indentation!

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 15 / 56

Simple Programming Example (9)

Update comments
The way we do loops is a bit different from our initial layout.

#Print numbers from 1 to n separated by - for n=1..12
#1. Take the first value of n (n=1)
for n in xrange(1,13):

#2. Write the numbers 1..n
#2.1 Take the first value to write (1)
for i in xrange(1,n+1):

#2.2 Write it down
print i,
#2.3. Add a dash
print '-',

#2.4. Repeat step 2+3 for next value unless equal to n
#3. Repeat for the next value of n unless n==12

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 16 / 56

Simple Programming Example (10)

Update comments
The way we do loops is a bit different from our initial layout:

#Print numbers from 1 to n separated by - for n=1..12
#1. Let n take values from 1 to 12
for n in xrange(1,13):

#2. Write the numbers 1..n
#2.1 Let i take values from 1 to n
for i in xrange(1,n+1):

#2.2 Write it down
print i,
#2.3. Add a dash
print '-',

#2.4. Repeat step 2+3 for next value of i
#3. Repeat for next value of n

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 17 / 56

Simple Programming Example (11)

Update comments
Numbering not that relevant: refer to code blocks.

#Print numbers from 1 to n separated by - for n=1..12
Let n take values from 1 to 12
for n in xrange(1,13):

Write the numbers 1..n
Let i take values from 1 to n
for i in xrange(1,n+1):

Write it down
print i,
Add a dash
print '-',

Repeat block for next value of i
Repeat block for next value of n

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 18 / 56

Simple Programming Example (12)
#Print numbers from 1 to n separated by - for n=1..12
Let n take values from 1 to 12
for n in xrange(1,13):

Write the numbers 1..n
Let i take values from 1 to n
for i in xrange(1,n+1):

Write it down
print i,
Add a dash
print '-',

Repeat block for next value of i
Repeat block for next value of n

Output
1 - 1 - 2 - 1 - 2 - 3 - 1 - 2 - 3 - 4 - 1 - 2 - 3 - 4
- 5 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 -
7 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 1 - 2 - 3 - 4 - 5
- 6 - 7 - 8 - 9 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -
10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 1
- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 19 / 56

Simple Programming Example (13)

Output
1 - 1 - 2 - 1 - 2 - 3 - 1 - 2 - 3 - 4 - 1 - 2 - 3 - 4
- 5 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 -
7 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 1 - 2 - 3 - 4 - 5
- 6 - 7 - 8 - 9 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -
10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 1
- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

What is wrong?
No ‘newlines’

Solution: some of the dashes should be ‘newlines’

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 20 / 56

Simple Programming Example (14)

#Print numbers from 1 to n separated by - for n=1..12
Let n take values from 1 to 12
for n in xrange(1,13):

Write the numbers 1..n
Let i take values from 1 to n
for i in xrange(1,n+1):

Write it down
print i,
Add a dash or newline
if i<n:

print '-',
else:

print ''
Repeat block for next value of i

Repeat block for next value of n

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 21 / 56

Simple Programming Example (15)

#Print numbers from 1 to n separated by - for n=1..12
Let n take values from 1 to 12
for n in xrange(1,13):

Write the numbers 1..n
Let i take values from 1 to n-1
for i in xrange(1,n):

Write it down
print i,
Add a dash
print '-',

Print value of n at the end with a newline
print n
Repeat block for next value of i

Repeat block for next value of n

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 22 / 56

Top-down or Bottom-up approach

Top-down approach
We write the top level first and then coded the lower level, i.e., writing
the numbers 1..n, later.

Bottom-up approach
One could also first implement writing the number 1..n.
Must define lower-level tools first nonetheless.

More generally, a bottom-up approach means putting simpler pieces or
code together to get a more complex system.

In a sense, we used the bottom-up approach when we invoke the
built-in functions xrange and print, which someone had already
programmed for us.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 23 / 56

Modularity
Modularity

We have seen python modules that can be imported

You can write your own modules

Each module should have one logical reponsibility

Each module is in its own file

Within in a modules, organize code in functions

Each function should have one logical purpose

Advantages of modular programming
More reuseable than monolythic designs

Clearer code

Easier to maintain

Easier to track changes

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 24 / 56

Modularity: Example
File: writenumbers.py
Function to write a line of numbers upto n
def write_numbers_upto(n):

"""Writes the numbers 1 through the argument n"""
Let i take values from 1 to n-1
for i in xrange(1,n):

Write it down with a dash
print i, '-',

Print value of n at the end with a newline
print n

Function to write several lines of numbers upto m
def write_multiple_numbers_upto(m):

"""Print numbers 1 through n for n=1..m"""
for n in xrange(1,m+1):

write_numbers_upto(n)

import writenumbers
writenumbers.write_multiple_numbers_upto(12)
Note that dot!

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 25 / 56

Other terminogoly

Structured Programming
I Very much like what we did
I One would likely extract functions at the scaffolding stage, instead of

extracting them after writing the code.

Object-oriented Programming
I Combine functions and data into objects
I Useful is collection of functions is responsible for acting on the data

piece of data
I Much like modules that contain data, but you can have multiple

instances of the same type of objects.

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 26 / 56

Version Control (Theory)

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 27 / 56

Version Control

What is it?
A tool for managing changes in a set of files.

Figuring out who broke what where and when.

Why Do it?
Collaboration

Organization

Track Changes

Faster Development

Reduce Errors

Reproducibility

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 28 / 56

Collaboration
Questions

What if two (or more) people want to edit the same file at the same
time?

What if you work on a lab and on your own computer?

Answers
Option 1: make them take turns

I But then only one person can be working at any time
I And how do you enforce the rule?

Option 2: patch up differences afterwards
I Requires a lot of re-working
I Stuff always gets lost

Option 3: Version Control

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 29 / 56

Organize and Track Changes

Question
Want to undo changes to a file

I Start work, realize it’s the wrong approach, want to get back to starting
point

I Like “undo” in an editor. . .

. . . but keep the whole history of every file, forever

Also want to be able to see who changed what, when
I The best way to find out how something works is often to ask the

person who wrote it

Answer
Version Control

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 30 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 31 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 32 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 33 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 34 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 35 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 36 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 37 / 56

How Version Control Works

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 38 / 56

How Version Control Works

Resolving Conflicts: Optimistic Concurrency
Milk
<<<<<<<
Cheese
=======
Hot Dog
>>>>>>>
Juice

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 39 / 56

What VC System to Use?

Software
Open Source

I Subversion, CVS, RCS
I Git, Mercurial, Bazaar

Commercial
I Perforce, ClearCase

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 40 / 56

Mercurial Version Control

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 41 / 56

Mercurial

Open-Source Distributed Version Control System

Written in Python

Relatively easy to learn

Platform independent

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 42 / 56

Mercurial Installation

If you got the academic license, you can install mercurial from the
Canopy package manager.

If not, you can install it outside of Canopy and still use it. (package
manager or download from mercurial site)

After installation, tell mercurial who you are by editing
In Windows: %HOME%/Mercurial.ini
In Linux/Mac: $HOME/.hgrc
And adding

[ui]
username = FIRSTNAME LASTNAME <EMAILADDRESS>

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 43 / 56

Mercurial Usage In Enthought Canopy

Mercurial is used through a command line.

A command can be any executable plus arguments.

Get the OS command line from IPython with an exclamation mark.

The name of the mercurial executable is hg, followed by a subcommand
and other arguments.

In IPython, mercurial commands would have form

!hg subcommand ...

We can omit the exclamation mark if we first type

alias hg hg

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 44 / 56

Basic things you want to do with Mercurial

1 Start a repository
2 Add files to be tracked
3 Store files
4 Modify/remove files
5 View (file) history
6 Revert changes
7 Copy a repository

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 45 / 56

1 Start a repository

hg init

This start a repository in the current directory by adding a subdirectory .hg.

Make sure you are in the right directory (cd)

Example
In [1]: alias hg hg

In [2]: cd mypythonfolder

In [3]: hg init

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 46 / 56

2 Add files to be tracked

hg add [FILE [FILE ...]]

This adds FILE to be tracked in the repository.

Does not yet store it, just flags it.

If no FILEs are given adds all files in current directory.

Note on notation: All-caps words to be replaced by real names. denotes
optional arguments.

Example
In [4]: open("groceries","w").write("Milk\n")

In [5]: hg add groceries

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 47 / 56

3 Store files

hg commit -m 'MESSAGE'

This stores all the tracked files (only changes are stored).

To view what changes haven’t been commited yet:

hg status

Example
In [6]: hg commit -m 'First commit of grocery list'
groceries
committed changeset 0:f741ddf70ab2

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 48 / 56

4 Modify/remove files
Tracked modified files are stored in the repository when you commit.

Removing tracked files will flag them as ‘missing’.

To actually delete missing files from the repository:

hg remove -A

Example
In [7]: open("groceries","a").write("Eggs")

In [8]: hg status
M groceries

In [9]: hg commit -m 'Also need eggs'
groceries
committed changeset 1:44f60c750dc1

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 49 / 56

5 View (file) change history

hg log [FILE]

Shows history.

hg diff [FILE]

What changed since last commit?
Example
In [10]: hg log
changeset: 1:44f60c750dc1
tag: tip
user: Ramses "van Zon" <rzon@scinethpc.ca>
date: Tue Nov 12 01:15:04 2013 -0500
files: groceries
description:
Also need eggs

changeset: 0:f741ddf70ab2
user: Ramses "van Zon" <rzon@scinethpc.ca>
date: Tue Nov 12 01:11:56 2013 -0500
files: groceries
description:
First commit of grocery list

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 50 / 56

6 Revert changes

To revert uncommitted changes

hg revert FILE

or for all files:

hg revert --all

To revert last commit

hg rollback

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 51 / 56

7 Copy a repository

hg clone SOURCEPATH TARGETPATH

Can be used to revert to an arbitrary version as well:

hg clone -r VERSION SOURCEPATH TARGETPATH

Example
In [11]: cd ..

In [12]: hg clone mypythonfolder newpythonfolder
updating to branch default
resolving manifests
getting groceries
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 52 / 56

A few VC tips

Use it! Will save you trouble.

Commit often

Give sensible comment messages

Don’t commit derivative stuff (log files, executables, compiled python
modules)

Rarely need to commit large binary files

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 53 / 56

Basic Mercurial Commands - Recap

command purpose

hg init create .hg repo folder for version data
hg add add file(s) to be tracked
hg remove -A remove already deleted files from repo
hg commit store tracked files
hg revert forget changes since last commit
hg rollback forget last commit
hg clone copy repository
hg log history
hg diff differences

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 54 / 56

Next Time

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 55 / 56

Next Lecture

Thursday November 13, 2014, 11:00 am
Topic: Numpy and Visualization

Ramses van Zon (SciNet HPC Consortium)Research Computing with Python, Lecture 3, Programming Strategies and Version controlNovember 11, 2014 56 / 56

	Top-down Programming
	Version Control (Theory)
	Mercurial Version Control
	Next Time

